OpenCV 4.5.3(日本語機械翻訳)
cuda/utility.hpp
[詳解]
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #ifndef OPENCV_CUDA_UTILITY_HPP
44 #define OPENCV_CUDA_UTILITY_HPP
45
46 #include "saturate_cast.hpp"
47 #include "datamov_utils.hpp"
48
54
55 namespace cv { namespace cuda { namespace device
56{
57 struct CV_EXPORTS ThrustAllocator
58 {
59 typedef uchar value_type;
60 virtual ~ThrustAllocator();
61 virtual __device__ __host__ uchar* allocate(size_t numBytes) = 0;
62 virtual __device__ __host__ void deallocate(uchar* ptr, size_t numBytes) = 0;
63 static ThrustAllocator& getAllocator();
64 static void setAllocator(ThrustAllocator* allocator);
65 };
66 #define OPENCV_CUDA_LOG_WARP_SIZE (5)
67 #define OPENCV_CUDA_WARP_SIZE (1 << OPENCV_CUDA_LOG_WARP_SIZE)
68 #define OPENCV_CUDA_LOG_MEM_BANKS ((__CUDA_ARCH__ >= 200) ? 5 : 4) // 32 banks on fermi, 16 on tesla
69 #define OPENCV_CUDA_MEM_BANKS (1 << OPENCV_CUDA_LOG_MEM_BANKS)
70
72 // swap
73
74 template <typename T> void __device__ __host__ __forceinline__ swap(T& a, T& b)
75 {
76 const T temp = a;
77 a = b;
78 b = temp;
79 }
80
82 // Mask Reader
83
84 struct SingleMask
85 {
86 explicit __host__ __device__ __forceinline__ SingleMask(PtrStepb mask_) : mask(mask_) {}
87 __host__ __device__ __forceinline__ SingleMask(const SingleMask& mask_): mask(mask_.mask){}
88
89 __device__ __forceinline__ bool operator()(int y, int x) const
90 {
91 return mask.ptr(y)[x] != 0;
92 }
93
94 PtrStepb mask;
95 };
96
97 struct SingleMaskChannels
98 {
99 __host__ __device__ __forceinline__ SingleMaskChannels(PtrStepb mask_, int channels_)
100 : mask(mask_), channels(channels_) {}
101 __host__ __device__ __forceinline__ SingleMaskChannels(const SingleMaskChannels& mask_)
102 :mask(mask_.mask), channels(mask_.channels){}
103
104 __device__ __forceinline__ bool operator()(int y, int x) const
105 {
106 return mask.ptr(y)[x / channels] != 0;
107 }
108
109 PtrStepb mask;
110 int channels;
111 };
112
113 struct MaskCollection
114 {
115 explicit __host__ __device__ __forceinline__ MaskCollection(PtrStepb* maskCollection_)
116 : maskCollection(maskCollection_) {}
117
118 __device__ __forceinline__ MaskCollection(const MaskCollection& masks_)
119 : maskCollection(masks_.maskCollection), curMask(masks_.curMask){}
120
121 __device__ __forceinline__ void next()
122 {
123 curMask = *maskCollection++;
124 }
125 __device__ __forceinline__ void setMask(int z)
126 {
127 curMask = maskCollection[z];
128 }
129
130 __device__ __forceinline__ bool operator()(int y, int x) const
131 {
132 uchar val;
133 return curMask.data == 0 || (ForceGlob<uchar>::Load(curMask.ptr(y), x, val), (val != 0));
134 }
135
136 const PtrStepb* maskCollection;
137 PtrStepb curMask;
138 };
139
140 struct WithOutMask
141 {
142 __host__ __device__ __forceinline__ WithOutMask(){}
143 __host__ __device__ __forceinline__ WithOutMask(const WithOutMask&){}
144
145 __device__ __forceinline__ void next() const
146 {
147 }
148 __device__ __forceinline__ void setMask(int) const
149 {
150 }
151
152 __device__ __forceinline__ bool operator()(int, int) const
153 {
154 return true;
155 }
156
157 __device__ __forceinline__ bool operator()(int, int, int) const
158 {
159 return true;
160 }
161
162 static __device__ __forceinline__ bool check(int, int)
163 {
164 return true;
165 }
166
167 static __device__ __forceinline__ bool check(int, int, int)
168 {
169 return true;
170 }
171 };
172
174 // Solve linear system
175
176 // solve 2x2 linear system Ax=b
177 template <typename T> __device__ __forceinline__ bool solve2x2(const T A[2][2], const T b[2], T x[2])
178 {
179 T det = A[0][0] * A[1][1] - A[1][0] * A[0][1];
180
181 if (det != 0)
182 {
183 double invdet = 1.0 / det;
184
185 x[0] = saturate_cast<T>(invdet * (b[0] * A[1][1] - b[1] * A[0][1]));
186
187 x[1] = saturate_cast<T>(invdet * (A[0][0] * b[1] - A[1][0] * b[0]));
188
189 return true;
190 }
191
192 return false;
193 }
194
195 // solve 3x3 linear system Ax=b
196 template <typename T> __device__ __forceinline__ bool solve3x3(const T A[3][3], const T b[3], T x[3])
197 {
198 T det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1])
199 - A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0])
200 + A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]);
201
202 if (det != 0)
203 {
204 double invdet = 1.0 / det;
205
206 x[0] = saturate_cast<T>(invdet *
207 (b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) -
208 A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) +
209 A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] )));
210
211 x[1] = saturate_cast<T>(invdet *
212 (A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) -
213 b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) +
214 A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0])));
215
216 x[2] = saturate_cast<T>(invdet *
217 (A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) -
218 A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) +
219 b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0])));
220
221 return true;
222 }
223
224 return false;
225 }
226}}} // namespace cv { namespace cuda { namespace cudev
227
229
230 #endif // OPENCV_CUDA_UTILITY_HPP
CV_EXPORTS void swap(Mat &a, Mat &b)
Swaps two matrices
cv
"black box" representation of the file storage associated with a file on disk.
Definition: aruco.hpp:75