OpenCV 4.5.3(日本語機械翻訳)
クラス
Partial List of Implemented Layers

クラス

class cv::dnn::BlankLayer
class cv::dnn::ConstLayer
class cv::dnn::LSTMLayer
LSTM再帰層[【詳解】(英語]
class cv::dnn::RNNLayer
古典的な再帰層[【詳解】(英語]
class cv::dnn::BaseConvolutionLayer
class cv::dnn::ConvolutionLayer
class cv::dnn::DeconvolutionLayer
class cv::dnn::LRNLayer
class cv::dnn::PoolingLayer
class cv::dnn::SoftmaxLayer
class cv::dnn::InnerProductLayer
class cv::dnn::MVNLayer
class cv::dnn::ReshapeLayer
class cv::dnn::FlattenLayer
class cv::dnn::ConcatLayer
class cv::dnn::SplitLayer
class cv::dnn::SliceLayer
class cv::dnn::PermuteLayer
class cv::dnn::ShuffleChannelLayer
class cv::dnn::PaddingLayer
特定の軸に対する追加の値を追加します。[【詳解】(英語]
class cv::dnn::ActivationLayer
class cv::dnn::ReLULayer
class cv::dnn::ReLU6Layer
class cv::dnn::ChannelsPReLULayer
class cv::dnn::ELULayer
class cv::dnn::TanHLayer
class cv::dnn::SwishLayer
class cv::dnn::MishLayer
class cv::dnn::SigmoidLayer
class cv::dnn::BNLLLayer
class cv::dnn::AbsLayer
class cv::dnn::PowerLayer
class cv::dnn::ExpLayer
class cv::dnn::CropLayer
class cv::dnn::EltwiseLayer
入力に対する要素ごとの操作[【詳解】(英語]
class cv::dnn::BatchNormLayer
class cv::dnn::MaxUnpoolLayer
class cv::dnn::ScaleLayer
class cv::dnn::ShiftLayer
class cv::dnn::DataAugmentationLayer
class cv::dnn::CorrelationLayer
class cv::dnn::AccumLayer
class cv::dnn::FlowWarpLayer
class cv::dnn::PriorBoxLayer
class cv::dnn::ReorgLayer
class cv::dnn::RegionLayer
class cv::dnn::DetectionOutputLayer
検出出力層。[【詳解】(英語]
class cv::dnn::NormalizeBBoxLayer
$ L_p $- Normalization Layer (正規化層)[【詳解】(英語]
class cv::dnn::ResizeLayer
入力された4次元blobのサイズを、最近接法またはバイリニア法で変更します。[【詳解】(英語]
class cv::dnn::InterpLayer
のバイリニアリサイズレイヤーhttps://github.com/cdmh/deeplab-public-ver2 [【詳解】(英語]
class cv::dnn::ProposalLayer
class cv::dnn::CropAndResizeLayer

詳解

This subsection of dnn module contains information about built-in layers and their descriptions.

Classes listed here, in fact, provides C++ API for creating instances of built-in layers. In addition to this way of layers instantiation, there is a more common factory API (see Utilities for New Layers Registration), it allows to create layers dynamically (by name) and register new ones. You can use both API, but factory API is less convenient for native C++ programming and basically designed for use inside importers (see readNetFromCaffe(), readNetFromTorch(), readNetFromTensorflow()).

Built-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers. In particular, the following layers and Caffe importer were tested to reproduce Caffe functionality: