OpenCV 4.5.3(日本語機械翻訳)
kdtree_index.h
1 /***********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5 * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6 *
7 * THE BSD LICENSE
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *************************************************************************/
30
31 #ifndef OPENCV_FLANN_KDTREE_INDEX_H_
32 #define OPENCV_FLANN_KDTREE_INDEX_H_
33
35
36 #include <algorithm>
37 #include <map>
38 #include <cstring>
39
40 #include "nn_index.h"
41 #include "dynamic_bitset.h"
42 #include "matrix.h"
43 #include "result_set.h"
44 #include "heap.h"
45 #include "allocator.h"
46 #include "random.h"
47 #include "saving.h"
48
49
50 namespace cvflann
51{
52
53 struct KDTreeIndexParams : public IndexParams
54{
55 KDTreeIndexParams(int trees = 4)
56 {
57 (*this)["algorithm"] = FLANN_INDEX_KDTREE;
58 (*this)["trees"] = trees;
59 }
60};
61
62
69 template <typename Distance>
70 class KDTreeIndex : public NNIndex<Distance>
71{
72 public:
73 typedef typename Distance::ElementType ElementType;
74 typedef typename Distance::ResultType DistanceType;
75
76
84 KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
85 Distance d = Distance() ) :
86 dataset_(inputData), index_params_(params), distance_(d)
87 {
88 size_ = dataset_.rows;
89 veclen_ = dataset_.cols;
90
91 trees_ = get_param(index_params_,"trees",4);
92 tree_roots_ = new NodePtr[trees_];
93
94 // Create a permutable array of indices to the input vectors.
95 vind_.resize(size_);
96 for (size_t i = 0; i < size_; ++i) {
97 vind_[i] = int(i);
98 }
99
100 mean_ = new DistanceType[veclen_];
101 var_ = new DistanceType[veclen_];
102 }
103
104
105 KDTreeIndex(const KDTreeIndex&);
106 KDTreeIndex& operator=(const KDTreeIndex&);
107
111 ~KDTreeIndex()
112 {
113 if (tree_roots_!=NULL) {
114 delete[] tree_roots_;
115 }
116 delete[] mean_;
117 delete[] var_;
118 }
119
123 void buildIndex() CV_OVERRIDE
124 {
125 /* Construct the randomized trees. */
126 for (int i = 0; i < trees_; i++) {
127 /* Randomize the order of vectors to allow for unbiased sampling. */
128 #ifndef OPENCV_FLANN_USE_STD_RAND
129 cv::randShuffle(vind_);
130 #else
131 std::random_shuffle(vind_.begin(), vind_.end());
132 #endif
133
134 tree_roots_[i] = divideTree(&vind_[0], int(size_) );
135 }
136 }
137
138
139 flann_algorithm_t getType() const CV_OVERRIDE
140 {
141 return FLANN_INDEX_KDTREE;
142 }
143
144
145 void saveIndex(FILE* stream) CV_OVERRIDE
146 {
147 save_value(stream, trees_);
148 for (int i=0; i<trees_; ++i) {
149 save_tree(stream, tree_roots_[i]);
150 }
151 }
152
153
154
155 void loadIndex(FILE* stream) CV_OVERRIDE
156 {
157 load_value(stream, trees_);
158 if (tree_roots_!=NULL) {
159 delete[] tree_roots_;
160 }
161 tree_roots_ = new NodePtr[trees_];
162 for (int i=0; i<trees_; ++i) {
163 load_tree(stream,tree_roots_[i]);
164 }
165
166 index_params_["algorithm"] = getType();
167 index_params_["trees"] = tree_roots_;
168 }
169
173 size_t size() const CV_OVERRIDE
174 {
175 return size_;
176 }
177
181 size_t veclen() const CV_OVERRIDE
182 {
183 return veclen_;
184 }
185
190 int usedMemory() const CV_OVERRIDE
191 {
192 return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
193 }
194
204 void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
205 {
206 const int maxChecks = get_param(searchParams,"checks", 32);
207 const float epsError = 1+get_param(searchParams,"eps",0.0f);
208 const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
209
210 if (maxChecks==FLANN_CHECKS_UNLIMITED) {
211 getExactNeighbors(result, vec, epsError);
212 }
213 else {
214 getNeighbors(result, vec, maxChecks, epsError, explore_all_trees);
215 }
216 }
217
218 IndexParams getParameters() const CV_OVERRIDE
219 {
220 return index_params_;
221 }
222
223 private:
224
225
226 /*--------------------- Internal Data Structures --------------------------*/
227 struct Node
228 {
232 int divfeat;
236 DistanceType divval;
240 Node* child1, * child2;
241 };
242 typedef Node* NodePtr;
243 typedef BranchStruct<NodePtr, DistanceType> BranchSt;
244 typedef BranchSt* Branch;
245
246
247
248 void save_tree(FILE* stream, NodePtr tree)
249 {
250 save_value(stream, *tree);
251 if (tree->child1!=NULL) {
252 save_tree(stream, tree->child1);
253 }
254 if (tree->child2!=NULL) {
255 save_tree(stream, tree->child2);
256 }
257 }
258
259
260 void load_tree(FILE* stream, NodePtr& tree)
261 {
262 tree = pool_.allocate<Node>();
263 load_value(stream, *tree);
264 if (tree->child1!=NULL) {
265 load_tree(stream, tree->child1);
266 }
267 if (tree->child2!=NULL) {
268 load_tree(stream, tree->child2);
269 }
270 }
271
272
282 NodePtr divideTree(int* ind, int count)
283 {
284 NodePtr node = pool_.allocate<Node>(); // allocate memory
285
286 /* If too few exemplars remain, then make this a leaf node. */
287 if ( count == 1) {
288 node->child1 = node->child2 = NULL; /* Mark as leaf node. */
289 node->divfeat = *ind; /* Store index of this vec. */
290 }
291 else {
292 int idx;
293 int cutfeat;
294 DistanceType cutval;
295 meanSplit(ind, count, idx, cutfeat, cutval);
296
297 node->divfeat = cutfeat;
298 node->divval = cutval;
299 node->child1 = divideTree(ind, idx);
300 node->child2 = divideTree(ind+idx, count-idx);
301 }
302
303 return node;
304 }
305
306
312 void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
313 {
314 memset(mean_,0,veclen_*sizeof(DistanceType));
315 memset(var_,0,veclen_*sizeof(DistanceType));
316
317 /* Compute mean values. Only the first SAMPLE_MEAN values need to be
318 sampled to get a good estimate.
319 */
320 int cnt = std::min((int)SAMPLE_MEAN+1, count);
321 for (int j = 0; j < cnt; ++j) {
322 ElementType* v = dataset_[ind[j]];
323 for (size_t k=0; k<veclen_; ++k) {
324 mean_[k] += v[k];
325 }
326 }
327 for (size_t k=0; k<veclen_; ++k) {
328 mean_[k] /= cnt;
329 }
330
331 /* Compute variances (no need to divide by count). */
332 for (int j = 0; j < cnt; ++j) {
333 ElementType* v = dataset_[ind[j]];
334 for (size_t k=0; k<veclen_; ++k) {
335 DistanceType dist = v[k] - mean_[k];
336 var_[k] += dist * dist;
337 }
338 }
339 /* Select one of the highest variance indices at random. */
340 cutfeat = selectDivision(var_);
341 cutval = mean_[cutfeat];
342
343 int lim1, lim2;
344 planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
345
346 if (lim1>count/2) index = lim1;
347 else if (lim2<count/2) index = lim2;
348 else index = count/2;
349
350 /* If either list is empty, it means that all remaining features
351 * are identical. Split in the middle to maintain a balanced tree.
352 */
353 if ((lim1==count)||(lim2==0)) index = count/2;
354 }
355
356
361 int selectDivision(DistanceType* v)
362 {
363 int num = 0;
364 size_t topind[RAND_DIM];
365
366 /* Create a list of the indices of the top RAND_DIM values. */
367 for (size_t i = 0; i < veclen_; ++i) {
368 if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
369 /* Put this element at end of topind. */
370 if (num < RAND_DIM) {
371 topind[num++] = i; /* Add to list. */
372 }
373 else {
374 topind[num-1] = i; /* Replace last element. */
375 }
376 /* Bubble end value down to right location by repeated swapping. */
377 int j = num - 1;
378 while (j > 0 && v[topind[j]] > v[topind[j-1]]) {
379 std::swap(topind[j], topind[j-1]);
380 --j;
381 }
382 }
383 }
384 /* Select a random integer in range [0,num-1], and return that index. */
385 int rnd = rand_int(num);
386 return (int)topind[rnd];
387 }
388
389
399 void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
400 {
401 /* Move vector indices for left subtree to front of list. */
402 int left = 0;
403 int right = count-1;
404 for (;; ) {
405 while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
406 while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
407 if (left>right) break;
408 std::swap(ind[left], ind[right]); ++left; --right;
409 }
410 lim1 = left;
411 right = count-1;
412 for (;; ) {
413 while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
414 while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
415 if (left>right) break;
416 std::swap(ind[left], ind[right]); ++left; --right;
417 }
418 lim2 = left;
419 }
420
425 void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
426 {
427 // checkID -= 1; /* Set a different unique ID for each search. */
428
429 if (trees_ > 1) {
430 fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
431 }
432 if (trees_>0) {
433 searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
434 }
435 CV_Assert(result.full());
436 }
437
443 void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec,
444 int maxCheck, float epsError, bool explore_all_trees = false)
445 {
446 int i;
447 BranchSt branch;
448
449 int checkCount = 0;
450 Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
451 DynamicBitset checked(size_);
452
453 /* Search once through each tree down to root. */
454 for (i = 0; i < trees_; ++i) {
455 searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck,
456 epsError, heap, checked, explore_all_trees);
457 if (!explore_all_trees && (checkCount >= maxCheck) && result.full())
458 break;
459 }
460
461 /* Keep searching other branches from heap until finished. */
462 while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
463 searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck,
464 epsError, heap, checked, false);
465 }
466
467 delete heap;
468
469 CV_Assert(result.full());
470 }
471
472
478 void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
479 float epsError, Heap<BranchSt>* heap, DynamicBitset& checked, bool explore_all_trees = false)
480 {
481 if (result_set.worstDist()<mindist) {
482 // printf("Ignoring branch, too far\n");
483 return;
484 }
485
486 /* If this is a leaf node, then do check and return. */
487 if ((node->child1 == NULL)&&(node->child2 == NULL)) {
488 /* Do not check same node more than once when searching multiple trees.
489 Once a vector is checked, we set its location in vind to the
490 current checkID.
491 */
492 int index = node->divfeat;
493 if ( checked.test(index) ||
494 (!explore_all_trees && (checkCount>=maxCheck) && result_set.full()) ) {
495 return;
496 }
497 checked.set(index);
498 checkCount++;
499
500 DistanceType dist = distance_(dataset_[index], vec, veclen_);
501 result_set.addPoint(dist,index);
502
503 return;
504 }
505
506 /* Which child branch should be taken first? */
507 ElementType val = vec[node->divfeat];
508 DistanceType diff = val - node->divval;
509 NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
510 NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
511
512 /* Create a branch record for the branch not taken. Add distance
513 of this feature boundary (we don't attempt to correct for any
514 use of this feature in a parent node, which is unlikely to
515 happen and would have only a small effect). Don't bother
516 adding more branches to heap after halfway point, as cost of
517 adding exceeds their value.
518 */
519
520 DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
521 // if (2 * checkCount < maxCheck || !result.full()) {
522 if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) {
523 heap->insert( BranchSt(otherChild, new_distsq) );
524 }
525
526 /* Call recursively to search next level down. */
527 searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
528 }
529
533 void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
534 {
535 /* If this is a leaf node, then do check and return. */
536 if ((node->child1 == NULL)&&(node->child2 == NULL)) {
537 int index = node->divfeat;
538 DistanceType dist = distance_(dataset_[index], vec, veclen_);
539 result_set.addPoint(dist,index);
540 return;
541 }
542
543 /* Which child branch should be taken first? */
544 ElementType val = vec[node->divfeat];
545 DistanceType diff = val - node->divval;
546 NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
547 NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
548
549 /* Create a branch record for the branch not taken. Add distance
550 of this feature boundary (we don't attempt to correct for any
551 use of this feature in a parent node, which is unlikely to
552 happen and would have only a small effect). Don't bother
553 adding more branches to heap after halfway point, as cost of
554 adding exceeds their value.
555 */
556
557 DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
558
559 /* Call recursively to search next level down. */
560 searchLevelExact(result_set, vec, bestChild, mindist, epsError);
561
562 if (new_distsq*epsError<=result_set.worstDist()) {
563 searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
564 }
565 }
566
567
568 private:
569
570 enum
571 {
577 SAMPLE_MEAN = 100,
585 RAND_DIM=5
586 };
587
588
592 int trees_;
593
597 std::vector<int> vind_;
598
602 const Matrix<ElementType> dataset_;
603
604 IndexParams index_params_;
605
606 size_t size_;
607 size_t veclen_;
608
609
610 DistanceType* mean_;
611 DistanceType* var_;
612
613
617 NodePtr* tree_roots_;
618
626 PooledAllocator pool_;
627
628 Distance distance_;
629
630
631}; // class KDTreeForest
632
633}
634
636
637 #endif //OPENCV_FLANN_KDTREE_INDEX_H_
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst)
Calculates per-element minimum of two arrays or an array and a scalar.
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor=1., RNG *rng=0)
Shuffles the array elements randomly.
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails
Definition: base.hpp:342
CV_EXPORTS void swap(Mat &a, Mat &b)
Swaps two matrices