48
# include "opencv2/core.hpp"
107
class
CV_EXPORTS_W ParamGrid
113
ParamGrid(
double
_minVal,
double
_maxVal,
double
_logStep);
115
CV_PROP_RW
double
minVal;
116
CV_PROP_RW
double
maxVal;
125
CV_PROP_RW
double
logStep;
133
CV_WRAP
static
Ptr<ParamGrid> create(
double
minVal=0.,
double
maxVal=0.,
double
logstep=1.);
145
class
CV_EXPORTS_W TrainData
148
static
inline
float
missingValue() {
return
FLT_MAX; }
149
virtual
~TrainData();
151
CV_WRAP
virtual
int
getLayout()
const
= 0;
152
CV_WRAP
virtual
int
getNTrainSamples()
const
= 0;
153
CV_WRAP
virtual
int
getNTestSamples()
const
= 0;
154
CV_WRAP
virtual
int
getNSamples()
const
= 0;
155
CV_WRAP
virtual
int
getNVars()
const
= 0;
156
CV_WRAP
virtual
int
getNAllVars()
const
= 0;
158
CV_WRAP
virtual
void
getSample(InputArray varIdx,
int
sidx,
float* buf)
const
= 0;
159
CV_WRAP
virtual
Mat getSamples()
const
= 0;
160
CV_WRAP
virtual
Mat getMissing()
const
= 0;
174
CV_WRAP
virtual
Mat getTrainSamples(
int
layout=ROW_SAMPLE,
175
bool
compressSamples=
true,
176
bool
compressVars=
true)
const
= 0;
183
CV_WRAP
virtual
Mat getTrainResponses()
const
= 0;
191
CV_WRAP
virtual
Mat getTrainNormCatResponses()
const
= 0;
192
CV_WRAP
virtual
Mat getTestResponses()
const
= 0;
193
CV_WRAP
virtual
Mat getTestNormCatResponses()
const
= 0;
194
CV_WRAP
virtual
Mat getResponses()
const
= 0;
195
CV_WRAP
virtual
Mat getNormCatResponses()
const
= 0;
196
CV_WRAP
virtual
Mat getSampleWeights()
const
= 0;
197
CV_WRAP
virtual
Mat getTrainSampleWeights()
const
= 0;
198
CV_WRAP
virtual
Mat getTestSampleWeights()
const
= 0;
199
CV_WRAP
virtual
Mat getVarIdx()
const
= 0;
200
CV_WRAP
virtual
Mat getVarType()
const
= 0;
201
CV_WRAP
virtual
Mat getVarSymbolFlags()
const
= 0;
202
CV_WRAP
virtual
int
getResponseType()
const
= 0;
203
CV_WRAP
virtual
Mat getTrainSampleIdx()
const
= 0;
204
CV_WRAP
virtual
Mat getTestSampleIdx()
const
= 0;
205
CV_WRAP
virtual
void
getValues(
int
vi, InputArray sidx,
float* values)
const
= 0;
206
virtual
void
getNormCatValues(
int
vi, InputArray sidx,
int* values)
const
= 0;
207
CV_WRAP
virtual
Mat getDefaultSubstValues()
const
= 0;
209
CV_WRAP
virtual
int
getCatCount(
int
vi)
const
= 0;
215
CV_WRAP
virtual
Mat getClassLabels()
const
= 0;
217
CV_WRAP
virtual
Mat getCatOfs()
const
= 0;
218
CV_WRAP
virtual
Mat getCatMap()
const
= 0;
223
CV_WRAP
virtual
void
setTrainTestSplit(
int
count,
bool
shuffle=
true) = 0;
233
CV_WRAP
virtual
void
setTrainTestSplitRatio(
double
ratio,
bool
shuffle=
true) = 0;
234
CV_WRAP
virtual
void
shuffleTrainTest() = 0;
237
CV_WRAP
virtual
Mat getTestSamples()
const
= 0;
240
CV_WRAP
virtual
void
getNames(std::vector<String>& names)
const
= 0;
246
static
CV_WRAP Mat getSubVector(
const
Mat& vec,
const
Mat& idx);
253
static
CV_WRAP Mat getSubMatrix(
const
Mat& matrix,
const
Mat& idx,
int
layout);
284
static
Ptr<TrainData> loadFromCSV(
const
String& filename,
286
int
responseStartIdx=-1,
287
int
responseEndIdx=-1,
288
const
String& varTypeSpec=String(),
311
CV_WRAP
static
Ptr<TrainData> create(InputArray samples,
int
layout, InputArray responses,
312
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
313
InputArray sampleWeights=noArray(), InputArray varType=noArray());
318
class
CV_EXPORTS_W StatModel :
public
Algorithm
330
CV_WRAP
virtual
int
getVarCount()
const
= 0;
332
CV_WRAP
virtual
bool
empty() const CV_OVERRIDE;
335
CV_WRAP virtual
bool
isTrained() const = 0;
337
CV_WRAP virtual
bool
isClassifier() const = 0;
346
CV_WRAP virtual
bool
train( const Ptr<TrainData>& trainData,
int
flags=0 );
354
CV_WRAP virtual
bool
train( InputArray samples,
int
layout, InputArray responses );
369
CV_WRAP virtual
float
calcError( const Ptr<TrainData>& data,
bool
test, OutputArray resp ) const;
377
CV_WRAP virtual
float
predict( InputArray samples, OutputArray results=noArray(),
int
flags=0 ) const = 0;
383
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data,
int
flags=0)
385
Ptr<_Tp> model = _Tp::create();
386
return
!model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
398
class
CV_EXPORTS_W NormalBayesClassifier :
public
StatModel
409
CV_WRAP
virtual
float
predictProb( InputArray inputs, OutputArray outputs,
410
OutputArray outputProbs,
int
flags=0 )
const
= 0;
414
CV_WRAP
static
Ptr<NormalBayesClassifier> create();
425
CV_WRAP
static
Ptr<NormalBayesClassifier> load(
const
String& filepath ,
const
String& nodeName = String());
436
class
CV_EXPORTS_W KNearest :
public
StatModel
442
CV_WRAP
virtual
int
getDefaultK()
const
= 0;
444
CV_WRAP
virtual
void
setDefaultK(
int
val) = 0;
448
CV_WRAP
virtual
bool
getIsClassifier()
const
= 0;
450
CV_WRAP
virtual
void
setIsClassifier(
bool
val) = 0;
454
CV_WRAP
virtual
int
getEmax()
const
= 0;
456
CV_WRAP
virtual
void
setEmax(
int
val) = 0;
460
CV_WRAP
virtual
int
getAlgorithmType()
const
= 0;
462
CV_WRAP
virtual
void
setAlgorithmType(
int
val) = 0;
490
CV_WRAP
virtual
float
findNearest( InputArray samples,
int
k,
492
OutputArray neighborResponses=noArray(),
493
OutputArray dist=noArray() )
const
= 0;
507
CV_WRAP
static
Ptr<KNearest> create();
515
CV_WRAP
static
Ptr<KNearest> load(
const
String& filepath);
526
class
CV_EXPORTS_W SVM :
public
StatModel
530
class
CV_EXPORTS Kernel :
public
Algorithm
533
virtual
int
getType()
const
= 0;
534
virtual
void
calc(
int
vcount,
int
n,
const
float* vecs,
const
float* another,
float* results ) = 0;
540
CV_WRAP
virtual
int
getType()
const
= 0;
542
CV_WRAP
virtual
void
setType(
int
val) = 0;
547
CV_WRAP
virtual
double
getGamma()
const
= 0;
549
CV_WRAP
virtual
void
setGamma(
double
val) = 0;
554
CV_WRAP
virtual
double
getCoef0()
const
= 0;
556
CV_WRAP
virtual
void
setCoef0(
double
val) = 0;
561
CV_WRAP
virtual
double
getDegree()
const
= 0;
563
CV_WRAP
virtual
void
setDegree(
double
val) = 0;
568
CV_WRAP
virtual
double
getC()
const
= 0;
570
CV_WRAP
virtual
void
setC(
double
val) = 0;
575
CV_WRAP
virtual
double
getNu()
const
= 0;
577
CV_WRAP
virtual
void
setNu(
double
val) = 0;
582
CV_WRAP
virtual
double
getP()
const
= 0;
584
CV_WRAP
virtual
void
setP(
double
val) = 0;
592
CV_WRAP
virtual
cv::Mat
getClassWeights()
const
= 0;
594
CV_WRAP
virtual
void
setClassWeights(
const
cv::Mat
&val) = 0;
607
CV_WRAP
virtual
int
getKernelType()
const
= 0;
611
CV_WRAP
virtual
void
setKernel(
int
kernelType) = 0;
615
virtual
void
setCustomKernel(
const
Ptr<Kernel> &_kernel) = 0;
712
virtual
bool
trainAuto(
const
Ptr<TrainData>& data,
int
kFold = 10,
713
ParamGrid Cgrid = getDefaultGrid(C),
714
ParamGrid gammaGrid = getDefaultGrid(GAMMA),
715
ParamGrid pGrid = getDefaultGrid(P),
716
ParamGrid nuGrid = getDefaultGrid(NU),
717
ParamGrid coeffGrid = getDefaultGrid(COEF),
718
ParamGrid degreeGrid = getDefaultGrid(DEGREE),
719
bool
balanced=
false) = 0;
749
CV_WRAP
virtual
bool
trainAuto(InputArray samples,
751
InputArray responses,
753
Ptr<ParamGrid> Cgrid = SVM::getDefaultGridPtr(SVM::C),
754
Ptr<ParamGrid> gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA),
755
Ptr<ParamGrid> pGrid = SVM::getDefaultGridPtr(SVM::P),
756
Ptr<ParamGrid> nuGrid = SVM::getDefaultGridPtr(SVM::NU),
757
Ptr<ParamGrid> coeffGrid = SVM::getDefaultGridPtr(SVM::COEF),
758
Ptr<ParamGrid> degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE),
759
bool
balanced=
false) = 0;
766
CV_WRAP
virtual
Mat getSupportVectors()
const
= 0;
774
CV_WRAP
virtual
Mat getUncompressedSupportVectors()
const
= 0;
791
CV_WRAP
virtual
double
getDecisionFunction(
int
i, OutputArray alpha, OutputArray svidx)
const
= 0;
801
static
ParamGrid getDefaultGrid(
int
param_id );
811
CV_WRAP
static
Ptr<ParamGrid> getDefaultGridPtr(
int
param_id );
816
CV_WRAP
static
Ptr<SVM> create();
825
CV_WRAP
static
Ptr<SVM> load(
const
String& filepath);
836
class
CV_EXPORTS_W EM :
public
StatModel
857
COV_MAT_DEFAULT=COV_MAT_DIAGONAL
861
enum
{DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
864
enum
{START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
871
CV_WRAP
virtual
int
getClustersNumber()
const
= 0;
873
CV_WRAP
virtual
void
setClustersNumber(
int
val) = 0;
878
CV_WRAP
virtual
int
getCovarianceMatrixType()
const
= 0;
880
CV_WRAP
virtual
void
setCovarianceMatrixType(
int
val) = 0;
887
CV_WRAP
virtual
TermCriteria getTermCriteria()
const
= 0;
889
CV_WRAP
virtual
void
setTermCriteria(
const
TermCriteria &val) = 0;
895
CV_WRAP
virtual
Mat getWeights()
const
= 0;
901
CV_WRAP
virtual
Mat getMeans()
const
= 0;
907
CV_WRAP
virtual
void
getCovs(CV_OUT std::vector<Mat>& covs)
const
= 0;
916
CV_WRAP
virtual
float
predict( InputArray samples, OutputArray results=noArray(),
int
flags=0 ) const CV_OVERRIDE = 0;
930
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
960
CV_WRAP virtual
bool
trainEM(InputArray samples,
961
OutputArray logLikelihoods=noArray(),
962
OutputArray labels=noArray(),
963
OutputArray probs=noArray()) = 0;
992
CV_WRAP virtual
bool
trainE(InputArray samples, InputArray means0,
993
InputArray covs0=noArray(),
994
InputArray weights0=noArray(),
995
OutputArray logLikelihoods=noArray(),
996
OutputArray labels=noArray(),
997
OutputArray probs=noArray()) = 0;
1017
CV_WRAP virtual
bool
trainM(InputArray samples, InputArray probs0,
1018
OutputArray logLikelihoods=noArray(),
1019
OutputArray labels=noArray(),
1020
OutputArray probs=noArray()) = 0;
1026
CV_WRAP static Ptr<EM> create();
1037
CV_WRAP static Ptr<EM> load(const String& filepath , const String& nodeName = String());
1053class CV_EXPORTS_W DTrees : public StatModel
1057
enum
Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
1071
CV_WRAP
virtual
int
getMaxCategories()
const
= 0;
1073
CV_WRAP
virtual
void
setMaxCategories(
int
val) = 0;
1081
CV_WRAP
virtual
int
getMaxDepth()
const
= 0;
1083
CV_WRAP
virtual
void
setMaxDepth(
int
val) = 0;
1089
CV_WRAP
virtual
int
getMinSampleCount()
const
= 0;
1091
CV_WRAP
virtual
void
setMinSampleCount(
int
val) = 0;
1097
CV_WRAP
virtual
int
getCVFolds()
const
= 0;
1099
CV_WRAP
virtual
void
setCVFolds(
int
val) = 0;
1106
CV_WRAP
virtual
bool
getUseSurrogates()
const
= 0;
1108
CV_WRAP
virtual
void
setUseSurrogates(
bool
val) = 0;
1114
CV_WRAP
virtual
bool
getUse1SERule()
const
= 0;
1116
CV_WRAP
virtual
void
setUse1SERule(
bool
val) = 0;
1122
CV_WRAP
virtual
bool
getTruncatePrunedTree()
const
= 0;
1124
CV_WRAP
virtual
void
setTruncatePrunedTree(
bool
val) = 0;
1131
CV_WRAP
virtual
float
getRegressionAccuracy()
const
= 0;
1133
CV_WRAP
virtual
void
setRegressionAccuracy(
float
val) = 0;
1151
CV_WRAP
virtual
cv::Mat
getPriors()
const
= 0;
1153
CV_WRAP
virtual
void
setPriors(
const
cv::Mat
&val) = 0;
1157
class
CV_EXPORTS Node
1175
class
CV_EXPORTS Split
1202
virtual
const
std::vector<int>& getRoots()
const
= 0;
1207
virtual
const
std::vector<Node>& getNodes()
const
= 0;
1212
virtual
const
std::vector<Split>& getSplits()
const
= 0;
1217
virtual
const
std::vector<int>& getSubsets()
const
= 0;
1225
CV_WRAP
static
Ptr<DTrees> create();
1236
CV_WRAP
static
Ptr<DTrees> load(
const
String& filepath ,
const
String& nodeName = String());
1247
class
CV_EXPORTS_W RTrees :
public
DTrees
1254
CV_WRAP
virtual
bool
getCalculateVarImportance()
const
= 0;
1256
CV_WRAP
virtual
void
setCalculateVarImportance(
bool
val) = 0;
1263
CV_WRAP
virtual
int
getActiveVarCount()
const
= 0;
1265
CV_WRAP
virtual
void
setActiveVarCount(
int
val) = 0;
1275
CV_WRAP
virtual
TermCriteria getTermCriteria()
const
= 0;
1277
CV_WRAP
virtual
void
setTermCriteria(
const
TermCriteria &val) = 0;
1284
CV_WRAP
virtual
Mat getVarImportance()
const
= 0;
1295
CV_WRAP
virtual
void
getVotes(InputArray samples, OutputArray results,
int
flags)
const
= 0;
1300
#if CV_VERSION_MAJOR == 4
1301
CV_WRAP
virtual
double
getOOBError()
const
{
return
0; }
1303
virtual
double
getOOBError()
const
= 0;
1310
CV_WRAP
static
Ptr<RTrees> create();
1321
CV_WRAP
static
Ptr<RTrees> load(
const
String& filepath ,
const
String& nodeName = String());
1332
class
CV_EXPORTS_W Boost :
public
DTrees
1338
CV_WRAP
virtual
int
getBoostType()
const
= 0;
1340
CV_WRAP
virtual
void
setBoostType(
int
val) = 0;
1345
CV_WRAP
virtual
int
getWeakCount()
const
= 0;
1347
CV_WRAP
virtual
void
setWeakCount(
int
val) = 0;
1353
CV_WRAP
virtual
double
getWeightTrimRate()
const
= 0;
1355
CV_WRAP
virtual
void
setWeightTrimRate(
double
val) = 0;
1370
CV_WRAP
static
Ptr<Boost> create();
1381
CV_WRAP
static
Ptr<Boost> load(
const
String& filepath ,
const
String& nodeName = String());
1431
class
CV_EXPORTS_W ANN_MLP :
public
StatModel
1435
enum
TrainingMethods {
1446
CV_WRAP
virtual
void
setTrainMethod(
int
method,
double
param1 = 0,
double
param2 = 0) = 0;
1449
CV_WRAP
virtual
int
getTrainMethod()
const
= 0;
1457
CV_WRAP
virtual
void
setActivationFunction(
int
type,
double
param1 = 0,
double
param2 = 0) = 0;
1463
CV_WRAP
virtual
void
setLayerSizes(InputArray _layer_sizes) = 0;
1469
CV_WRAP
virtual
cv::Mat
getLayerSizes()
const
= 0;
1476
CV_WRAP
virtual
TermCriteria getTermCriteria()
const
= 0;
1478
CV_WRAP
virtual
void
setTermCriteria(TermCriteria val) = 0;
1483
CV_WRAP
virtual
double
getBackpropWeightScale()
const
= 0;
1485
CV_WRAP
virtual
void
setBackpropWeightScale(
double
val) = 0;
1492
CV_WRAP
virtual
double
getBackpropMomentumScale()
const
= 0;
1494
CV_WRAP
virtual
void
setBackpropMomentumScale(
double
val) = 0;
1499
CV_WRAP
virtual
double
getRpropDW0()
const
= 0;
1501
CV_WRAP
virtual
void
setRpropDW0(
double
val) = 0;
1506
CV_WRAP
virtual
double
getRpropDWPlus()
const
= 0;
1508
CV_WRAP
virtual
void
setRpropDWPlus(
double
val) = 0;
1513
CV_WRAP
virtual
double
getRpropDWMinus()
const
= 0;
1515
CV_WRAP
virtual
void
setRpropDWMinus(
double
val) = 0;
1520
CV_WRAP
virtual
double
getRpropDWMin()
const
= 0;
1522
CV_WRAP
virtual
void
setRpropDWMin(
double
val) = 0;
1527
CV_WRAP
virtual
double
getRpropDWMax()
const
= 0;
1529
CV_WRAP
virtual
void
setRpropDWMax(
double
val) = 0;
1534
CV_WRAP
virtual
double
getAnnealInitialT()
const
= 0;
1536
CV_WRAP
virtual
void
setAnnealInitialT(
double
val) = 0;
1541
CV_WRAP
virtual
double
getAnnealFinalT()
const
= 0;
1543
CV_WRAP
virtual
void
setAnnealFinalT(
double
val) = 0;
1548
CV_WRAP
virtual
double
getAnnealCoolingRatio()
const
= 0;
1550
CV_WRAP
virtual
void
setAnnealCoolingRatio(
double
val) = 0;
1555
CV_WRAP
virtual
int
getAnnealItePerStep()
const
= 0;
1557
CV_WRAP
virtual
void
setAnnealItePerStep(
int
val) = 0;
1560
virtual
void
setAnnealEnergyRNG(
const
RNG& rng) = 0;
1563
enum
ActivationFunctions {
1597
CV_WRAP
virtual
Mat getWeights(
int
layerIdx)
const
= 0;
1604
CV_WRAP
static
Ptr<ANN_MLP> create();
1613
CV_WRAP
static
Ptr<ANN_MLP> load(
const
String& filepath);
1617
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
1618
typedef
ANN_MLP ANN_MLP_ANNEAL;
1629
class
CV_EXPORTS_W LogisticRegression :
public
StatModel
1635
CV_WRAP
virtual
double
getLearningRate()
const
= 0;
1637
CV_WRAP
virtual
void
setLearningRate(
double
val) = 0;
1641
CV_WRAP
virtual
int
getIterations()
const
= 0;
1643
CV_WRAP
virtual
void
setIterations(
int
val) = 0;
1647
CV_WRAP
virtual
int
getRegularization()
const
= 0;
1649
CV_WRAP
virtual
void
setRegularization(
int
val) = 0;
1653
CV_WRAP
virtual
int
getTrainMethod()
const
= 0;
1655
CV_WRAP
virtual
void
setTrainMethod(
int
val) = 0;
1661
CV_WRAP
virtual
int
getMiniBatchSize()
const
= 0;
1663
CV_WRAP
virtual
void
setMiniBatchSize(
int
val) = 0;
1667
CV_WRAP
virtual
TermCriteria getTermCriteria()
const
= 0;
1669
CV_WRAP
virtual
void
setTermCriteria(TermCriteria val) = 0;
1691
CV_WRAP
virtual
float
predict( InputArray samples, OutputArray results=noArray(),
int
flags=0 ) const CV_OVERRIDE = 0;
1698
CV_WRAP virtual Mat get_learnt_thetas() const = 0;
1704
CV_WRAP static Ptr<LogisticRegression> create();
1715
CV_WRAP static Ptr<LogisticRegression> load(const String& filepath , const String& nodeName = String());
1796class CV_EXPORTS_W SVMSGD : public
cv::ml::StatModel
1818
CV_WRAP
virtual
Mat getWeights() = 0;
1823
CV_WRAP
virtual
float
getShift() = 0;
1829
CV_WRAP
static
Ptr<SVMSGD> create();
1840
CV_WRAP
static
Ptr<SVMSGD> load(
const
String& filepath ,
const
String& nodeName = String());
1846
CV_WRAP
virtual
void
setOptimalParameters(
int
svmsgdType = SVMSGD::ASGD,
int
marginType = SVMSGD::SOFT_MARGIN) = 0;
1850
CV_WRAP
virtual
int
getSvmsgdType()
const
= 0;
1852
CV_WRAP
virtual
void
setSvmsgdType(
int
svmsgdType) = 0;
1856
CV_WRAP
virtual
int
getMarginType()
const
= 0;
1858
CV_WRAP
virtual
void
setMarginType(
int
marginType) = 0;
1862
CV_WRAP
virtual
float
getMarginRegularization()
const
= 0;
1864
CV_WRAP
virtual
void
setMarginRegularization(
float
marginRegularization) = 0;
1868
CV_WRAP
virtual
float
getInitialStepSize()
const
= 0;
1870
CV_WRAP
virtual
void
setInitialStepSize(
float
InitialStepSize) = 0;
1874
CV_WRAP
virtual
float
getStepDecreasingPower()
const
= 0;
1876
CV_WRAP
virtual
void
setStepDecreasingPower(
float
stepDecreasingPower) = 0;
1882
CV_WRAP
virtual
TermCriteria getTermCriteria()
const
= 0;
1899CV_EXPORTS
void
randMVNormal( InputArray mean, InputArray cov,
int
nsamples, OutputArray samples);
1902CV_EXPORTS
void
createConcentricSpheresTestSet(
int
nsamples,
int
nfeatures,
int
nclasses,
1903
OutputArray samples, OutputArray responses);
1915
struct
SimulatedAnnealingSolverSystem
1918
double
energy()
const;
1922
void
reverseState();
1938
template<
class
SimulatedAnnealingSolverSystem>
1939
int
simulatedAnnealingSolver(SimulatedAnnealingSolverSystem& solverSystem,
1940
double
initialTemperature,
double
finalTemperature,
double
coolingRatio,
1941
size_t
iterationsPerStep,
1942
CV_OUT
double* lastTemperature = NULL,
1951
#include <opencv2/ml/ml.inl.hpp>
n-dimensional dense array class
Definition:
mat.hpp:802
Random Number Generator
Definition:
core.hpp:2783
The class defining termination criteria for iterative algorithms.
Definition:
core/types.hpp:853
CV_EXPORTS void split(const Mat &src, Mat *mvbegin)
Divides a multi-channel array into several single-channel arrays.
CV_EXPORTS RNG & theRNG()
Returns the default random number generator.
@ LINEAR
linear (triangular) shape
Definition:
fuzzy/types.hpp:55
"black box" representation of the file storage associated with a file on disk.
Definition:
aruco.hpp:75