| 
    OpenCV453
    
   | 
 
Gaussian Mixture-based Background/Foreground Segmentation Algorithm. [詳解]
#include <background_segm.hpp>
cv::BackgroundSubtractorを継承しています。
公開メンバ関数 | |
| virtual CV_WRAP int | getHistory () const =0 | 
| Returns the number of last frames that affect the background model  | |
| virtual CV_WRAP void | setHistory (int history)=0 | 
| Sets the number of last frames that affect the background model  | |
| virtual CV_WRAP int | getNMixtures () const =0 | 
| Returns the number of gaussian components in the background model  | |
| virtual CV_WRAP void | setNMixtures (int nmixtures)=0 | 
| Sets the number of gaussian components in the background model.  [詳解] | |
| virtual CV_WRAP double | getBackgroundRatio () const =0 | 
| Returns the "background ratio" parameter of the algorithm  [詳解] | |
| virtual CV_WRAP void | setBackgroundRatio (double ratio)=0 | 
| Sets the "background ratio" parameter of the algorithm  | |
| virtual CV_WRAP double | getVarThreshold () const =0 | 
| Returns the variance threshold for the pixel-model match  [詳解] | |
| virtual CV_WRAP void | setVarThreshold (double varThreshold)=0 | 
| Sets the variance threshold for the pixel-model match  | |
| virtual CV_WRAP double | getVarThresholdGen () const =0 | 
| Returns the variance threshold for the pixel-model match used for new mixture component generation  [詳解] | |
| virtual CV_WRAP void | setVarThresholdGen (double varThresholdGen)=0 | 
| Sets the variance threshold for the pixel-model match used for new mixture component generation  | |
| virtual CV_WRAP double | getVarInit () const =0 | 
| Returns the initial variance of each gaussian component  | |
| virtual CV_WRAP void | setVarInit (double varInit)=0 | 
| Sets the initial variance of each gaussian component  | |
| virtual CV_WRAP double | getVarMin () const =0 | 
| virtual CV_WRAP void | setVarMin (double varMin)=0 | 
| virtual CV_WRAP double | getVarMax () const =0 | 
| virtual CV_WRAP void | setVarMax (double varMax)=0 | 
| virtual CV_WRAP double | getComplexityReductionThreshold () const =0 | 
| Returns the complexity reduction threshold  [詳解] | |
| virtual CV_WRAP void | setComplexityReductionThreshold (double ct)=0 | 
| Sets the complexity reduction threshold  | |
| virtual CV_WRAP bool | getDetectShadows () const =0 | 
| Returns the shadow detection flag  [詳解] | |
| virtual CV_WRAP void | setDetectShadows (bool detectShadows)=0 | 
| Enables or disables shadow detection  | |
| virtual CV_WRAP int | getShadowValue () const =0 | 
| Returns the shadow value  [詳解] | |
| virtual CV_WRAP void | setShadowValue (int value)=0 | 
| Sets the shadow value  | |
| virtual CV_WRAP double | getShadowThreshold () const =0 | 
| Returns the shadow threshold  [詳解] | |
| virtual CV_WRAP void | setShadowThreshold (double threshold)=0 | 
| Sets the shadow threshold  | |
| virtual CV_WRAP void | apply (InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE=0 | 
| Computes a foreground mask.  [詳解] | |
  基底クラス cv::BackgroundSubtractor に属する継承公開メンバ関数 | |
| virtual CV_WRAP void | getBackgroundImage (OutputArray backgroundImage) const =0 | 
| Computes a background image.  [詳解] | |
  基底クラス cv::Algorithm に属する継承公開メンバ関数 | |
| virtual CV_WRAP void | clear () | 
| Clears the algorithm state  [詳解] | |
| virtual void | write (FileStorage &fs) const | 
| Stores algorithm parameters in a file storage  [詳解] | |
| CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const | 
| simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。  | |
| virtual CV_WRAP void | read (const FileNode &fn) | 
| Reads algorithm parameters from a file storage  [詳解] | |
| virtual CV_WRAP bool | empty () const | 
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read  [詳解] | |
| virtual CV_WRAP void | save (const String &filename) const | 
| virtual CV_WRAP String | getDefaultName () const | 
その他の継承メンバ | |
  基底クラス cv::Algorithm に属する継承静的公開メンバ関数 | |
| template<typename _Tp > | |
| static Ptr< _Tp > | read (const FileNode &fn) | 
| Reads algorithm from the file node  [詳解] | |
| template<typename _Tp > | |
| static Ptr< _Tp > | load (const String &filename, const String &objname=String()) | 
| Loads algorithm from the file  [詳解] | |
| template<typename _Tp > | |
| static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) | 
| Loads algorithm from a String  [詳解] | |
  基底クラス cv::Algorithm に属する継承限定公開メンバ関数 | |
| void | writeFormat (FileStorage &fs) const | 
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class implements the Gaussian mixture model background subtraction described in [Zivkovic2004] and [Zivkovic2006] .
      
  | 
  pure virtual | 
Computes a foreground mask.
| image | Next video frame. Floating point frame will be used without scaling and should be in range  .  | 
| fgmask | The output foreground mask as an 8-bit binary image. | 
| learningRate | The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame. | 
cv::BackgroundSubtractorを実装しています。
      
  | 
  pure virtual | 
Returns the "background ratio" parameter of the algorithm
If a foreground pixel keeps semi-constant value for about backgroundRatio*history frames, it's considered background and added to the model as a center of a new component. It corresponds to TB parameter in the paper.
      
  | 
  pure virtual | 
Returns the complexity reduction threshold
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the standard Stauffer&Grimson algorithm.
      
  | 
  pure virtual | 
Returns the shadow detection flag
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for details.
      
  | 
  pure virtual | 
Returns the shadow threshold
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, Detecting Moving Shadows...*, IEEE PAMI,2003.
      
  | 
  pure virtual | 
Returns the shadow value
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.
      
  | 
  pure virtual | 
Returns the variance threshold for the pixel-model match
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by the background model or not. Related to Cthr from the paper.
      
  | 
  pure virtual | 
Returns the variance threshold for the pixel-model match used for new mixture component generation
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it is considered foreground or added as a new component. 3 sigma => Tg=3*3=9 is default. A smaller Tg value generates more components. A higher Tg value may result in a small number of components but they can grow too large.
      
  | 
  pure virtual | 
Sets the number of gaussian components in the background model.
The model needs to be reinitalized to reserve memory.