The class implements the modified H. Hirschmuller algorithm [HH08] that differs from the original one as follows:
[詳解]
#include <calib3d.hpp>
cv::StereoMatcherを継承しています。
|
enum | { MODE_SGBM = 0
, MODE_HH = 1
, MODE_SGBM_3WAY = 2
, MODE_HH4 = 3
} |
|
enum | { DISP_SHIFT = 4
, DISP_SCALE = (1 << DISP_SHIFT)
} |
|
|
virtual CV_WRAP int | getPreFilterCap () const =0 |
|
virtual CV_WRAP void | setPreFilterCap (int preFilterCap)=0 |
|
virtual CV_WRAP int | getUniquenessRatio () const =0 |
|
virtual CV_WRAP void | setUniquenessRatio (int uniquenessRatio)=0 |
|
virtual CV_WRAP int | getP1 () const =0 |
|
virtual CV_WRAP void | setP1 (int P1)=0 |
|
virtual CV_WRAP int | getP2 () const =0 |
|
virtual CV_WRAP void | setP2 (int P2)=0 |
|
virtual CV_WRAP int | getMode () const =0 |
|
virtual CV_WRAP void | setMode (int mode)=0 |
|
virtual CV_WRAP void | compute (InputArray left, InputArray right, OutputArray disparity)=0 |
| Computes disparity map for the specified stereo pair [詳解]
|
|
virtual CV_WRAP int | getMinDisparity () const =0 |
|
virtual CV_WRAP void | setMinDisparity (int minDisparity)=0 |
|
virtual CV_WRAP int | getNumDisparities () const =0 |
|
virtual CV_WRAP void | setNumDisparities (int numDisparities)=0 |
|
virtual CV_WRAP int | getBlockSize () const =0 |
|
virtual CV_WRAP void | setBlockSize (int blockSize)=0 |
|
virtual CV_WRAP int | getSpeckleWindowSize () const =0 |
|
virtual CV_WRAP void | setSpeckleWindowSize (int speckleWindowSize)=0 |
|
virtual CV_WRAP int | getSpeckleRange () const =0 |
|
virtual CV_WRAP void | setSpeckleRange (int speckleRange)=0 |
|
virtual CV_WRAP int | getDisp12MaxDiff () const =0 |
|
virtual CV_WRAP void | setDisp12MaxDiff (int disp12MaxDiff)=0 |
|
virtual CV_WRAP void | clear () |
| Clears the algorithm state [詳解]
|
|
virtual void | write (FileStorage &fs) const |
| Stores algorithm parameters in a file storage [詳解]
|
|
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
|
|
virtual CV_WRAP void | read (const FileNode &fn) |
| Reads algorithm parameters from a file storage [詳解]
|
|
virtual CV_WRAP bool | empty () const |
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解]
|
|
virtual CV_WRAP void | save (const String &filename) const |
|
virtual CV_WRAP String | getDefaultName () const |
|
|
static CV_WRAP Ptr< StereoSGBM > | create (int minDisparity=0, int numDisparities=16, int blockSize=3, int P1=0, int P2=0, int disp12MaxDiff=0, int preFilterCap=0, int uniquenessRatio=0, int speckleWindowSize=0, int speckleRange=0, int mode=StereoSGBM::MODE_SGBM) |
| Creates StereoSGBM object [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String [詳解]
|
|
The class implements the modified H. Hirschmuller algorithm [HH08] that differs from the original one as follows:
- By default, the algorithm is single-pass, which means that you consider only 5 directions instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the algorithm but beware that it may consume a lot of memory.
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the blocks to single pixels.
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi sub-pixel metric from [BT98] is used. Though, the color images are supported as well.
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness check, quadratic interpolation and speckle filtering).
- 覚え書き
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found at opencv_source_code/samples/python/stereo_match.py
◆ create()
static CV_WRAP Ptr< StereoSGBM > cv::StereoSGBM::create |
( |
int |
minDisparity = 0 , |
|
|
int |
numDisparities = 16 , |
|
|
int |
blockSize = 3 , |
|
|
int |
P1 = 0 , |
|
|
int |
P2 = 0 , |
|
|
int |
disp12MaxDiff = 0 , |
|
|
int |
preFilterCap = 0 , |
|
|
int |
uniquenessRatio = 0 , |
|
|
int |
speckleWindowSize = 0 , |
|
|
int |
speckleRange = 0 , |
|
|
int |
mode = StereoSGBM::MODE_SGBM |
|
) |
| |
|
static |
Creates StereoSGBM object
- 引数
-
minDisparity | Minimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. |
numDisparities | Maximum disparity minus minimum disparity. The value is always greater than zero. In the current implementation, this parameter must be divisible by 16. |
blockSize | Matched block size. It must be an odd number >=1 . Normally, it should be somewhere in the 3..11 range. |
P1 | The first parameter controlling the disparity smoothness. See below. |
P2 | The second parameter controlling the disparity smoothness. The larger the values are, the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor pixels. The algorithm requires P2 > P1 . See stereo_match.cpp sample where some reasonably good P1 and P2 values are shown (like 8*number_of_image_channels*blockSize*blockSize and 32*number_of_image_channels*blockSize*blockSize , respectively). |
disp12MaxDiff | Maximum allowed difference (in integer pixel units) in the left-right disparity check. Set it to a non-positive value to disable the check. |
preFilterCap | Truncation value for the prefiltered image pixels. The algorithm first computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. The result values are passed to the Birchfield-Tomasi pixel cost function. |
uniquenessRatio | Margin in percentage by which the best (minimum) computed cost function value should "win" the second best value to consider the found match correct. Normally, a value within the 5-15 range is good enough. |
speckleWindowSize | Maximum size of smooth disparity regions to consider their noise speckles and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 50-200 range. |
speckleRange | Maximum disparity variation within each connected component. If you do speckle filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. Normally, 1 or 2 is good enough. |
mode | Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming algorithm. It will consume O(W*H*numDisparities) bytes, which is large for 640x480 stereo and huge for HD-size pictures. By default, it is set to false . |
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter to a custom value.
このクラス詳解は次のファイルから抽出されました: