OpenCV453
公開型 | 公開メンバ関数 | 静的公開メンバ関数 | 全メンバ一覧
cv::StereoSGBM クラスabstract

The class implements the modified H. Hirschmuller algorithm [HH08] that differs from the original one as follows: [詳解]

#include <calib3d.hpp>

cv::StereoMatcherを継承しています。

公開型

enum  { MODE_SGBM = 0 , MODE_HH = 1 , MODE_SGBM_3WAY = 2 , MODE_HH4 = 3 }
 
- 基底クラス cv::StereoMatcher に属する継承公開型
enum  { DISP_SHIFT = 4 , DISP_SCALE = (1 << DISP_SHIFT) }
 

公開メンバ関数

virtual CV_WRAP int getPreFilterCap () const =0
 
virtual CV_WRAP void setPreFilterCap (int preFilterCap)=0
 
virtual CV_WRAP int getUniquenessRatio () const =0
 
virtual CV_WRAP void setUniquenessRatio (int uniquenessRatio)=0
 
virtual CV_WRAP int getP1 () const =0
 
virtual CV_WRAP void setP1 (int P1)=0
 
virtual CV_WRAP int getP2 () const =0
 
virtual CV_WRAP void setP2 (int P2)=0
 
virtual CV_WRAP int getMode () const =0
 
virtual CV_WRAP void setMode (int mode)=0
 
- 基底クラス cv::StereoMatcher に属する継承公開メンバ関数
virtual CV_WRAP void compute (InputArray left, InputArray right, OutputArray disparity)=0
 Computes disparity map for the specified stereo pair [詳解]
 
virtual CV_WRAP int getMinDisparity () const =0
 
virtual CV_WRAP void setMinDisparity (int minDisparity)=0
 
virtual CV_WRAP int getNumDisparities () const =0
 
virtual CV_WRAP void setNumDisparities (int numDisparities)=0
 
virtual CV_WRAP int getBlockSize () const =0
 
virtual CV_WRAP void setBlockSize (int blockSize)=0
 
virtual CV_WRAP int getSpeckleWindowSize () const =0
 
virtual CV_WRAP void setSpeckleWindowSize (int speckleWindowSize)=0
 
virtual CV_WRAP int getSpeckleRange () const =0
 
virtual CV_WRAP void setSpeckleRange (int speckleRange)=0
 
virtual CV_WRAP int getDisp12MaxDiff () const =0
 
virtual CV_WRAP void setDisp12MaxDiff (int disp12MaxDiff)=0
 
- 基底クラス cv::Algorithm に属する継承公開メンバ関数
virtual CV_WRAP void clear ()
 Clears the algorithm state [詳解]
 
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage [詳解]
 
CV_WRAP void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
 
virtual CV_WRAP void read (const FileNode &fn)
 Reads algorithm parameters from a file storage [詳解]
 
virtual CV_WRAP bool empty () const
 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解]
 
virtual CV_WRAP void save (const String &filename) const
 
virtual CV_WRAP String getDefaultName () const
 

静的公開メンバ関数

static CV_WRAP Ptr< StereoSGBMcreate (int minDisparity=0, int numDisparities=16, int blockSize=3, int P1=0, int P2=0, int disp12MaxDiff=0, int preFilterCap=0, int uniquenessRatio=0, int speckleWindowSize=0, int speckleRange=0, int mode=StereoSGBM::MODE_SGBM)
 Creates StereoSGBM object [詳解]
 
- 基底クラス cv::Algorithm に属する継承静的公開メンバ関数
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node [詳解]
 
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file [詳解]
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String [詳解]
 

その他の継承メンバ

- 基底クラス cv::Algorithm に属する継承限定公開メンバ関数
void writeFormat (FileStorage &fs) const
 

詳解

The class implements the modified H. Hirschmuller algorithm [HH08] that differs from the original one as follows:

覚え書き
  • (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found at opencv_source_code/samples/python/stereo_match.py

関数詳解

◆ create()

static CV_WRAP Ptr< StereoSGBM > cv::StereoSGBM::create ( int  minDisparity = 0,
int  numDisparities = 16,
int  blockSize = 3,
int  P1 = 0,
int  P2 = 0,
int  disp12MaxDiff = 0,
int  preFilterCap = 0,
int  uniquenessRatio = 0,
int  speckleWindowSize = 0,
int  speckleRange = 0,
int  mode = StereoSGBM::MODE_SGBM 
)
static

Creates StereoSGBM object

引数
minDisparityMinimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
numDisparitiesMaximum disparity minus minimum disparity. The value is always greater than zero. In the current implementation, this parameter must be divisible by 16.
blockSizeMatched block size. It must be an odd number >=1 . Normally, it should be somewhere in the 3..11 range.
P1The first parameter controlling the disparity smoothness. See below.
P2The second parameter controlling the disparity smoothness. The larger the values are, the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor pixels. The algorithm requires P2 > P1 . See stereo_match.cpp sample where some reasonably good P1 and P2 values are shown (like 8*number_of_image_channels*blockSize*blockSize and 32*number_of_image_channels*blockSize*blockSize , respectively).
disp12MaxDiffMaximum allowed difference (in integer pixel units) in the left-right disparity check. Set it to a non-positive value to disable the check.
preFilterCapTruncation value for the prefiltered image pixels. The algorithm first computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. The result values are passed to the Birchfield-Tomasi pixel cost function.
uniquenessRatioMargin in percentage by which the best (minimum) computed cost function value should "win" the second best value to consider the found match correct. Normally, a value within the 5-15 range is good enough.
speckleWindowSizeMaximum size of smooth disparity regions to consider their noise speckles and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 50-200 range.
speckleRangeMaximum disparity variation within each connected component. If you do speckle filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. Normally, 1 or 2 is good enough.
modeSet it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming algorithm. It will consume O(W*H*numDisparities) bytes, which is large for 640x480 stereo and huge for HD-size pictures. By default, it is set to false .

The first constructor initializes StereoSGBM with all the default parameters. So, you only have to set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter to a custom value.


このクラス詳解は次のファイルから抽出されました: