OpenCV453
静的公開メンバ関数 | 全メンバ一覧
cv::face::EigenFaceRecognizer クラス

cv::face::BasicFaceRecognizerを継承しています。

静的公開メンバ関数

static CV_WRAP Ptr< EigenFaceRecognizercreate (int num_components=0, double threshold=DBL_MAX)
 
- 基底クラス cv::Algorithm に属する継承静的公開メンバ関数
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node [詳解]
 
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file [詳解]
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String [詳解]
 

その他の継承メンバ

- 基底クラス cv::face::BasicFaceRecognizer に属する継承公開メンバ関数
CV_WRAP int getNumComponents () const
 
CV_WRAP void setNumComponents (int val)
 
CV_WRAP double getThreshold () const CV_OVERRIDE
 
CV_WRAP void setThreshold (double val) CV_OVERRIDE
 
CV_WRAP std::vector< cv::MatgetProjections () const
 
CV_WRAP cv::Mat getLabels () const
 
CV_WRAP cv::Mat getEigenValues () const
 
CV_WRAP cv::Mat getEigenVectors () const
 
CV_WRAP cv::Mat getMean () const
 
virtual void read (const FileNode &fn) CV_OVERRIDE
 
virtual void write (FileStorage &fs) const CV_OVERRIDE
 
virtual bool empty () const CV_OVERRIDE
 
virtual CV_WRAP void read (const String &filename)
 Loads a FaceRecognizer and its model state. [詳解]
 
virtual void read (const FileNode &fn) CV_OVERRIDE=0
 
virtual CV_WRAP void write (const String &filename) const
 Saves a FaceRecognizer and its model state. [詳解]
 
virtual void write (FileStorage &fs) const CV_OVERRIDE=0
 
- 基底クラス cv::face::FaceRecognizer に属する継承公開メンバ関数
virtual CV_WRAP void train (InputArrayOfArrays src, InputArray labels)=0
 Trains a FaceRecognizer with given data and associated labels. [詳解]
 
virtual CV_WRAP void update (InputArrayOfArrays src, InputArray labels)
 Updates a FaceRecognizer with given data and associated labels. [詳解]
 
 CV_WRAP_AS (predict_label) int predict(InputArray src) const
 
CV_WRAP void predict (InputArray src, CV_OUT int &label, CV_OUT double &confidence) const
 Predicts a label and associated confidence (e.g. distance) for a given input image. [詳解]
 
 CV_WRAP_AS (predict_collect) virtual void predict(InputArray src
 
  • if implemented - send all result of prediction to collector that can be used for somehow custom result handling
[詳解]
 
virtual CV_WRAP void setLabelInfo (int label, const String &strInfo)
 Sets string info for the specified model's label. [詳解]
 
virtual CV_WRAP String getLabelInfo (int label) const
 Gets string information by label. [詳解]
 
virtual CV_WRAP std::vector< int > getLabelsByString (const String &str) const
 Gets vector of labels by string. [詳解]
 
- 基底クラス cv::Algorithm に属する継承公開メンバ関数
virtual CV_WRAP void clear ()
 Clears the algorithm state [詳解]
 
CV_WRAP void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
 
virtual CV_WRAP void save (const String &filename) const
 
virtual CV_WRAP String getDefaultName () const
 
- 基底クラス cv::face::FaceRecognizer に属する継承公開変数類
Ptr< PredictCollector > collector const = 0
 
- 基底クラス cv::Algorithm に属する継承限定公開メンバ関数
void writeFormat (FileStorage &fs) const
 
- 基底クラス cv::face::BasicFaceRecognizer に属する継承限定公開変数類
int _num_components
 
double _threshold
 
std::vector< Mat_projections
 
Mat _labels
 
Mat _eigenvectors
 
Mat _eigenvalues
 
Mat _mean
 
- 基底クラス cv::face::FaceRecognizer に属する継承限定公開変数類
std::map< int, String > _labelsInfo
 

関数詳解

◆ create()

static CV_WRAP Ptr< EigenFaceRecognizer > cv::face::EigenFaceRecognizer::create ( int  num_components = 0,
double  threshold = DBL_MAX 
)
static
引数
num_componentsThe number of components (read: Eigenfaces) kept for this Principal Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be kept for good reconstruction capabilities. It is based on your input data, so experiment with the number. Keeping 80 components should almost always be sufficient.
thresholdThe threshold applied in the prediction.

Notes:

  • Training and prediction must be done on grayscale images, use cvtColor to convert between the color spaces.
  • THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your input data has the correct shape, else a meaningful exception is thrown. Use resize to resize the images.
  • This model does not support updating.

Model internal data:

  • num_components see EigenFaceRecognizer::create.
  • threshold see EigenFaceRecognizer::create.
  • eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
  • eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their eigenvalue).
  • mean The sample mean calculated from the training data.
  • projections The projections of the training data.
  • labels The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.

このクラス詳解は次のファイルから抽出されました: