OpenCV453
|
Abstract base class for all facemark models [詳解]
#include <facemark.hpp>
cv::Algorithmを継承しています。
cv::face::FacemarkKazemi, cv::face::FacemarkTrainに継承されています。
公開メンバ関数 | |
virtual CV_WRAP void | loadModel (String model)=0 |
A function to load the trained model before the fitting process. [詳解] | |
virtual CV_WRAP bool | fit (InputArray image, InputArray faces, OutputArrayOfArrays landmarks)=0 |
Detect facial landmarks from an image. [詳解] | |
![]() | |
virtual CV_WRAP void | clear () |
Clears the algorithm state [詳解] | |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage [詳解] | |
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 | |
virtual CV_WRAP void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage [詳解] | |
virtual CV_WRAP bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解] | |
virtual CV_WRAP void | save (const String &filename) const |
virtual CV_WRAP String | getDefaultName () const |
その他の継承メンバ | |
![]() | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String [詳解] | |
![]() | |
void | writeFormat (FileStorage &fs) const |
Abstract base class for all facemark models
To utilize this API in your program, please take a look at the tutorial_table_of_content_facemark
Facemark is a base class which provides universal access to any specific facemark algorithm. Therefore, the users should declare a desired algorithm before they can use it in their application.
Here is an example on how to declare a facemark algorithm:
The typical pipeline for facemark detection is as follows:
|
pure virtual |
Detect facial landmarks from an image.
image | Input image. |
faces | Output of the function which represent region of interest of the detected faces. Each face is stored in cv::Rect container. |
landmarks | The detected landmark points for each faces. |
Example of usage
|
pure virtual |
A function to load the trained model before the fitting process.
model | A string represent the filename of a trained model. |
Example of usage