OpenCV453
静的公開メンバ関数 | 全メンバ一覧
cv::face::FisherFaceRecognizer クラス

cv::face::BasicFaceRecognizerを継承しています。

静的公開メンバ関数

static CV_WRAP Ptr< FisherFaceRecognizercreate (int num_components=0, double threshold=DBL_MAX)
 
- 基底クラス cv::Algorithm に属する継承静的公開メンバ関数
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node [詳解]
 
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file [詳解]
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String [詳解]
 

その他の継承メンバ

- 基底クラス cv::face::BasicFaceRecognizer に属する継承公開メンバ関数
CV_WRAP int getNumComponents () const
 
CV_WRAP void setNumComponents (int val)
 
CV_WRAP double getThreshold () const CV_OVERRIDE
 
CV_WRAP void setThreshold (double val) CV_OVERRIDE
 
CV_WRAP std::vector< cv::MatgetProjections () const
 
CV_WRAP cv::Mat getLabels () const
 
CV_WRAP cv::Mat getEigenValues () const
 
CV_WRAP cv::Mat getEigenVectors () const
 
CV_WRAP cv::Mat getMean () const
 
virtual void read (const FileNode &fn) CV_OVERRIDE
 
virtual void write (FileStorage &fs) const CV_OVERRIDE
 
virtual bool empty () const CV_OVERRIDE
 
virtual CV_WRAP void read (const String &filename)
 Loads a FaceRecognizer and its model state. [詳解]
 
virtual void read (const FileNode &fn) CV_OVERRIDE=0
 
virtual CV_WRAP void write (const String &filename) const
 Saves a FaceRecognizer and its model state. [詳解]
 
virtual void write (FileStorage &fs) const CV_OVERRIDE=0
 
- 基底クラス cv::face::FaceRecognizer に属する継承公開メンバ関数
virtual CV_WRAP void train (InputArrayOfArrays src, InputArray labels)=0
 Trains a FaceRecognizer with given data and associated labels. [詳解]
 
virtual CV_WRAP void update (InputArrayOfArrays src, InputArray labels)
 Updates a FaceRecognizer with given data and associated labels. [詳解]
 
 CV_WRAP_AS (predict_label) int predict(InputArray src) const
 
CV_WRAP void predict (InputArray src, CV_OUT int &label, CV_OUT double &confidence) const
 Predicts a label and associated confidence (e.g. distance) for a given input image. [詳解]
 
 CV_WRAP_AS (predict_collect) virtual void predict(InputArray src
 
  • if implemented - send all result of prediction to collector that can be used for somehow custom result handling
[詳解]
 
virtual CV_WRAP void setLabelInfo (int label, const String &strInfo)
 Sets string info for the specified model's label. [詳解]
 
virtual CV_WRAP String getLabelInfo (int label) const
 Gets string information by label. [詳解]
 
virtual CV_WRAP std::vector< int > getLabelsByString (const String &str) const
 Gets vector of labels by string. [詳解]
 
- 基底クラス cv::Algorithm に属する継承公開メンバ関数
virtual CV_WRAP void clear ()
 Clears the algorithm state [詳解]
 
CV_WRAP void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
 
virtual CV_WRAP void save (const String &filename) const
 
virtual CV_WRAP String getDefaultName () const
 
- 基底クラス cv::face::FaceRecognizer に属する継承公開変数類
Ptr< PredictCollector > collector const = 0
 
- 基底クラス cv::Algorithm に属する継承限定公開メンバ関数
void writeFormat (FileStorage &fs) const
 
- 基底クラス cv::face::BasicFaceRecognizer に属する継承限定公開変数類
int _num_components
 
double _threshold
 
std::vector< Mat_projections
 
Mat _labels
 
Mat _eigenvectors
 
Mat _eigenvalues
 
Mat _mean
 
- 基底クラス cv::face::FaceRecognizer に属する継承限定公開変数類
std::map< int, String > _labelsInfo
 

関数詳解

◆ create()

static CV_WRAP Ptr< FisherFaceRecognizer > cv::face::FisherFaceRecognizer::create ( int  num_components = 0,
double  threshold = DBL_MAX 
)
static
引数
num_componentsThe number of components (read: Fisherfaces) kept for this Linear Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that means the number of your classes c (read: subjects, persons you want to recognize). If you leave this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the correct number (c-1) automatically.
thresholdThe threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.

Notes:

  • Training and prediction must be done on grayscale images, use cvtColor to convert between the color spaces.
  • THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your input data has the correct shape, else a meaningful exception is thrown. Use resize to resize the images.
  • This model does not support updating.

Model internal data:

  • num_components see FisherFaceRecognizer::create.
  • threshold see FisherFaceRecognizer::create.
  • eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
  • eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their eigenvalue).
  • mean The sample mean calculated from the training data.
  • projections The projections of the training data.
  • labels The labels corresponding to the projections.

このクラス詳解は次のファイルから抽出されました: