|
| RgbdNormals (int rows, int cols, int depth, InputArray K, int window_size=5, int method=RgbdNormals::RGBD_NORMALS_METHOD_FALS) |
|
| CV_WRAP_AS (apply) void operator()(InputArray points |
|
CV_WRAP void | initialize () const |
|
CV_WRAP int | getRows () const |
|
CV_WRAP void | setRows (int val) |
|
CV_WRAP int | getCols () const |
|
CV_WRAP void | setCols (int val) |
|
CV_WRAP int | getWindowSize () const |
|
CV_WRAP void | setWindowSize (int val) |
|
CV_WRAP int | getDepth () const |
|
CV_WRAP void | setDepth (int val) |
|
CV_WRAP cv::Mat | getK () const |
|
CV_WRAP void | setK (const cv::Mat &val) |
|
CV_WRAP int | getMethod () const |
|
CV_WRAP void | setMethod (int val) |
|
virtual CV_WRAP void | clear () |
| Clears the algorithm state [詳解]
|
|
virtual void | write (FileStorage &fs) const |
| Stores algorithm parameters in a file storage [詳解]
|
|
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
|
|
virtual CV_WRAP void | read (const FileNode &fn) |
| Reads algorithm parameters from a file storage [詳解]
|
|
virtual CV_WRAP bool | empty () const |
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解]
|
|
virtual CV_WRAP void | save (const String &filename) const |
|
virtual CV_WRAP String | getDefaultName () const |
|
|
static CV_WRAP Ptr< RgbdNormals > | create (int rows, int cols, int depth, InputArray K, int window_size=5, int method=RgbdNormals::RGBD_NORMALS_METHOD_FALS) |
|
template<typename _Tp > |
static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String [詳解]
|
|
Object that can compute the normals in an image. It is an object as it can cache data for speed efficiency The implemented methods are either:
- FALS (the fastest) and SRI from
Fast and Accurate Computation of Surface Normals from Range Images
by H. Badino, D. Huber, Y. Park and T. Kanade
- the normals with bilateral filtering on a depth image from
Gradient Response Maps for Real-Time Detection of Texture-Less Objects
by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit