OpenCV453
|
Objectness algorithms based on [3] [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014. [詳解]
#include <saliencySpecializedClasses.hpp>
cv::saliency::Objectnessを継承しています。
公開メンバ関数 | |
CV_WRAP bool | computeSaliency (InputArray image, OutputArray saliencyMap) |
CV_WRAP void | read () |
CV_WRAP void | write () const |
CV_WRAP std::vector< float > | getobjectnessValues () |
Return the list of the rectangles' objectness value, [詳解] | |
CV_WRAP void | setTrainingPath (const String &trainingPath) |
This is a utility function that allows to set the correct path from which the algorithm will load the trained model. [詳解] | |
CV_WRAP void | setBBResDir (const String &resultsDir) |
This is a utility function that allows to set an arbitrary path in which the algorithm will save the optional results [詳解] | |
CV_WRAP double | getBase () const |
CV_WRAP void | setBase (double val) |
CV_WRAP int | getNSS () const |
CV_WRAP void | setNSS (int val) |
CV_WRAP int | getW () const |
CV_WRAP void | setW (int val) |
![]() | |
virtual | ~Saliency () |
Destructor | |
CV_WRAP bool | computeSaliency (InputArray image, OutputArray saliencyMap) |
Compute the saliency [詳解] | |
![]() | |
virtual CV_WRAP void | clear () |
Clears the algorithm state [詳解] | |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage [詳解] | |
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 | |
virtual CV_WRAP void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage [詳解] | |
virtual CV_WRAP bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解] | |
virtual CV_WRAP void | save (const String &filename) const |
virtual CV_WRAP String | getDefaultName () const |
静的公開メンバ関数 | |
static CV_WRAP Ptr< ObjectnessBING > | create () |
![]() | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String [詳解] | |
限定公開メンバ関数 | |
bool | computeSaliencyImpl (InputArray image, OutputArray objectnessBoundingBox) CV_OVERRIDE |
Performs all the operations and calls all internal functions necessary for the accomplishment of the Binarized normed gradients algorithm. [詳解] | |
![]() | |
void | writeFormat (FileStorage &fs) const |
その他の継承メンバ | |
![]() | |
String | className |
Objectness algorithms based on [3] [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
the Binarized normed gradients algorithm from [BING]
|
protectedvirtual |
Performs all the operations and calls all internal functions necessary for the accomplishment of the Binarized normed gradients algorithm.
image | input image. According to the needs of this specialized algorithm, the param image is a single Mat |
objectnessBoundingBox | objectness Bounding Box vector. According to the result given by this specialized algorithm, the objectnessBoundingBox is a vector<Vec4i>. Each bounding box is represented by a Vec4i for (minX, minY, maxX, maxY). |
cv::saliency::Objectnessを実装しています。
CV_WRAP std::vector< float > cv::saliency::ObjectnessBING::getobjectnessValues | ( | ) |
Return the list of the rectangles' objectness value,
in the same order as the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function). The bigger value these scores are, it is more likely to be an object window.
CV_WRAP void cv::saliency::ObjectnessBING::setBBResDir | ( | const String & | resultsDir | ) |
This is a utility function that allows to set an arbitrary path in which the algorithm will save the optional results
(ie writing on file the total number and the list of rectangles returned by objectess, one for each row).
resultsDir | results' folder path |
CV_WRAP void cv::saliency::ObjectnessBING::setTrainingPath | ( | const String & | trainingPath | ) |
This is a utility function that allows to set the correct path from which the algorithm will load the trained model.
trainingPath | trained model path |