OpenCV453
|
Class implementing BoostDesc (Learning Image Descriptors with Boosting), described in [Trzcinski13a] and [Trzcinski13b]. [詳解]
#include <xfeatures2d.hpp>
cv::Feature2Dを継承しています。
公開型 | |
enum | { BGM = 100 , BGM_HARD = 101 , BGM_BILINEAR = 102 , LBGM = 200 , BINBOOST_64 = 300 , BINBOOST_128 = 301 , BINBOOST_256 = 302 } |
公開メンバ関数 | |
virtual CV_WRAP void | setUseScaleOrientation (const bool use_scale_orientation)=0 |
virtual CV_WRAP bool | getUseScaleOrientation () const =0 |
virtual CV_WRAP void | setScaleFactor (const float scale_factor)=0 |
virtual CV_WRAP float | getScaleFactor () const =0 |
![]() | |
virtual CV_WRAP void | detect (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
Detects keypoints in an image (first variant) or image set (second variant). [詳解] | |
virtual CV_WRAP void | detect (InputArrayOfArrays images, CV_OUT std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
virtual CV_WRAP void | compute (InputArray image, CV_OUT CV_IN_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). [詳解] | |
virtual CV_WRAP void | compute (InputArrayOfArrays images, CV_OUT CV_IN_OUT std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
virtual CV_WRAP void | detectAndCompute (InputArray image, InputArray mask, CV_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
virtual CV_WRAP int | descriptorSize () const |
virtual CV_WRAP int | descriptorType () const |
virtual CV_WRAP int | defaultNorm () const |
CV_WRAP void | write (const String &fileName) const |
CV_WRAP void | read (const String &fileName) |
virtual void | write (FileStorage &) const CV_OVERRIDE |
Stores algorithm parameters in a file storage [詳解] | |
virtual CV_WRAP void | read (const FileNode &) CV_OVERRIDE |
Reads algorithm parameters from a file storage [詳解] | |
virtual CV_WRAP bool | empty () const CV_OVERRIDE |
Return true if detector object is empty [詳解] | |
virtual CV_WRAP String | getDefaultName () const CV_OVERRIDE |
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
![]() | |
virtual CV_WRAP void | clear () |
Clears the algorithm state [詳解] | |
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 | |
virtual CV_WRAP void | save (const String &filename) const |
静的公開メンバ関数 | |
static CV_WRAP Ptr< BoostDesc > | create (int desc=BoostDesc::BINBOOST_256, bool use_scale_orientation=true, float scale_factor=6.25f) |
![]() | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String [詳解] | |
その他の継承メンバ | |
![]() | |
void | writeFormat (FileStorage &fs) const |
Class implementing BoostDesc (Learning Image Descriptors with Boosting), described in [Trzcinski13a] and [Trzcinski13b].
desc | type of descriptor to use, BoostDesc::BINBOOST_256 is default (256 bit long dimension) Available types are: BoostDesc::BGM, BoostDesc::BGM_HARD, BoostDesc::BGM_BILINEAR, BoostDesc::LBGM, BoostDesc::BINBOOST_64, BoostDesc::BINBOOST_128, BoostDesc::BINBOOST_256 |
use_orientation | sample patterns using keypoints orientation, enabled by default |
scale_factor | adjust the sampling window of detected keypoints 6.25f is default and fits for KAZE, SURF detected keypoints window ratio 6.75f should be the scale for SIFT detected keypoints window ratio 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio 0.75f should be the scale for ORB keypoints ratio 1.50f was the default in original implementation |