|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) CV_OVERRIDE=0 |
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) CV_OVERRIDE |
|
virtual void | compute (InputArray image, Rect roi, OutputArray descriptors)=0 |
|
virtual void | compute (InputArray image, OutputArray descriptors)=0 |
|
virtual void | GetDescriptor (double y, double x, int orientation, float *descriptor) const =0 |
|
virtual bool | GetDescriptor (double y, double x, int orientation, float *descriptor, double *H) const =0 |
|
virtual void | GetUnnormalizedDescriptor (double y, double x, int orientation, float *descriptor) const =0 |
|
virtual bool | GetUnnormalizedDescriptor (double y, double x, int orientation, float *descriptor, double *H) const =0 |
|
virtual CV_WRAP void | detect (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant). [詳解]
|
|
virtual CV_WRAP void | detect (InputArrayOfArrays images, CV_OUT std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual CV_WRAP void | compute (InputArray image, CV_OUT CV_IN_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). [詳解]
|
|
virtual CV_WRAP void | compute (InputArrayOfArrays images, CV_OUT CV_IN_OUT std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual CV_WRAP void | detectAndCompute (InputArray image, InputArray mask, CV_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual CV_WRAP int | descriptorSize () const |
|
virtual CV_WRAP int | descriptorType () const |
|
virtual CV_WRAP int | defaultNorm () const |
|
CV_WRAP void | write (const String &fileName) const |
|
CV_WRAP void | read (const String &fileName) |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage [詳解]
|
|
virtual CV_WRAP void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage [詳解]
|
|
virtual CV_WRAP bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty [詳解]
|
|
virtual CV_WRAP String | getDefaultName () const CV_OVERRIDE |
|
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
|
virtual CV_WRAP void | clear () |
| Clears the algorithm state [詳解]
|
|
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
|
|
virtual CV_WRAP void | save (const String &filename) const |
|
|
static CV_WRAP Ptr< DAISY > | create (float radius=15, int q_radius=3, int q_theta=8, int q_hist=8, DAISY::NormalizationType norm=DAISY::NRM_NONE, InputArray H=noArray(), bool interpolation=true, bool use_orientation=false) |
|
template<typename _Tp > |
static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file [詳解]
|
|
template<typename _Tp > |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String [詳解]
|
|
Class implementing DAISY descriptor, described in [Tola10]
- 引数
-
radius | radius of the descriptor at the initial scale |
q_radius | amount of radial range division quantity |
q_theta | amount of angular range division quantity |
q_hist | amount of gradient orientations range division quantity |
norm | choose descriptors normalization type, where DAISY::NRM_NONE will not do any normalization (default), DAISY::NRM_PARTIAL mean that histograms are normalized independently for L2 norm equal to 1.0, DAISY::NRM_FULL mean that descriptors are normalized for L2 norm equal to 1.0, DAISY::NRM_SIFT mean that descriptors are normalized for L2 norm equal to 1.0 but no individual one is bigger than 0.154 as in SIFT |
H | optional 3x3 homography matrix used to warp the grid of daisy but sampling keypoints remains unwarped on image |
interpolation | switch to disable interpolation for speed improvement at minor quality loss |
use_orientation | sample patterns using keypoints orientation, disabled by default. |