OpenCV453
公開型 | 公開メンバ関数 | 静的公開メンバ関数 | 全メンバ一覧
cv::xfeatures2d::VGG クラスabstract

Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in [Simonyan14]. [詳解]

#include <xfeatures2d.hpp>

cv::Feature2Dを継承しています。

公開型

enum  { VGG_120 = 100 , VGG_80 = 101 , VGG_64 = 102 , VGG_48 = 103 }
 

公開メンバ関数

virtual CV_WRAP void setSigma (const float isigma)=0
 
virtual CV_WRAP float getSigma () const =0
 
virtual CV_WRAP void setUseNormalizeImage (const bool img_normalize)=0
 
virtual CV_WRAP bool getUseNormalizeImage () const =0
 
virtual CV_WRAP void setUseScaleOrientation (const bool use_scale_orientation)=0
 
virtual CV_WRAP bool getUseScaleOrientation () const =0
 
virtual CV_WRAP void setScaleFactor (const float scale_factor)=0
 
virtual CV_WRAP float getScaleFactor () const =0
 
virtual CV_WRAP void setUseNormalizeDescriptor (const bool dsc_normalize)=0
 
virtual CV_WRAP bool getUseNormalizeDescriptor () const =0
 
- 基底クラス cv::Feature2D に属する継承公開メンバ関数
virtual CV_WRAP void detect (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
 Detects keypoints in an image (first variant) or image set (second variant). [詳解]
 
virtual CV_WRAP void detect (InputArrayOfArrays images, CV_OUT std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
virtual CV_WRAP void compute (InputArray image, CV_OUT CV_IN_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors)
 Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). [詳解]
 
virtual CV_WRAP void compute (InputArrayOfArrays images, CV_OUT CV_IN_OUT std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
virtual CV_WRAP void detectAndCompute (InputArray image, InputArray mask, CV_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual CV_WRAP int descriptorSize () const
 
virtual CV_WRAP int descriptorType () const
 
virtual CV_WRAP int defaultNorm () const
 
CV_WRAP void write (const String &fileName) const
 
CV_WRAP void read (const String &fileName)
 
virtual void write (FileStorage &) const CV_OVERRIDE
 Stores algorithm parameters in a file storage [詳解]
 
virtual CV_WRAP void read (const FileNode &) CV_OVERRIDE
 Reads algorithm parameters from a file storage [詳解]
 
virtual CV_WRAP bool empty () const CV_OVERRIDE
 Return true if detector object is empty [詳解]
 
virtual CV_WRAP String getDefaultName () const CV_OVERRIDE
 
CV_WRAP void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 
- 基底クラス cv::Algorithm に属する継承公開メンバ関数
virtual CV_WRAP void clear ()
 Clears the algorithm state [詳解]
 
CV_WRAP void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
 
virtual CV_WRAP void save (const String &filename) const
 

静的公開メンバ関数

static CV_WRAP Ptr< VGGcreate (int desc=VGG::VGG_120, float isigma=1.4f, bool img_normalize=true, bool use_scale_orientation=true, float scale_factor=6.25f, bool dsc_normalize=false)
 
- 基底クラス cv::Algorithm に属する継承静的公開メンバ関数
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node [詳解]
 
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file [詳解]
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String [詳解]
 

その他の継承メンバ

- 基底クラス cv::Algorithm に属する継承限定公開メンバ関数
void writeFormat (FileStorage &fs) const
 

詳解

Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in [Simonyan14].

引数
desctype of descriptor to use, VGG::VGG_120 is default (120 dimensions float) Available types are VGG::VGG_120, VGG::VGG_80, VGG::VGG_64, VGG::VGG_48
isigmagaussian kernel value for image blur (default is 1.4f)
img_normalizeuse image sample intensity normalization (enabled by default)
use_orientationsample patterns using keypoints orientation, enabled by default
scale_factoradjust the sampling window of detected keypoints to 64.0f (VGG sampling window) 6.25f is default and fits for KAZE, SURF detected keypoints window ratio 6.75f should be the scale for SIFT detected keypoints window ratio 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio 0.75f should be the scale for ORB keypoints ratio
dsc_normalizeclamp descriptors to 255 and convert to uchar CV_8UC1 (disabled by default)

このクラス詳解は次のファイルから抽出されました: