OpenCV453
クラス | 型定義 | 関数
Feature Detection and Description

クラス

class  cv::KeyPointsFilter
 A class filters a vector of keypoints. [詳解]
 
class  cv::Feature2D
 Abstract base class for 2D image feature detectors and descriptor extractors [詳解]
 
class  cv::AffineFeature
 Class for implementing the wrapper which makes detectors and extractors to be affine invariant, described as ASIFT in [YM11] . [詳解]
 
class  cv::SIFT
 Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (SIFT) algorithm by D. Lowe [Lowe04] . [詳解]
 
class  cv::BRISK
 Class implementing the BRISK keypoint detector and descriptor extractor, described in [LCS11] . [詳解]
 
class  cv::ORB
 Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor [詳解]
 
class  cv::MSER
 Maximally stable extremal region extractor [詳解]
 
class  cv::FastFeatureDetector
 Wrapping class for feature detection using the FAST method. : [詳解]
 
class  cv::AgastFeatureDetector
 Wrapping class for feature detection using the AGAST method. : [詳解]
 
class  cv::GFTTDetector
 Wrapping class for feature detection using the goodFeaturesToTrack function. : [詳解]
 
class  cv::SimpleBlobDetector
 Class for extracting blobs from an image. : [詳解]
 
class  cv::KAZE
 Class implementing the KAZE keypoint detector and descriptor extractor, described in [ABD12] . [詳解]
 
class  cv::AKAZE
 Class implementing the AKAZE keypoint detector and descriptor extractor, described in [ANB13]. [詳解]
 

型定義

typedef Feature2D cv::FeatureDetector
 
typedef Feature2D cv::DescriptorExtractor
 
typedef AffineFeature cv::AffineFeatureDetector
 
typedef AffineFeature cv::AffineDescriptorExtractor
 
typedef SIFT cv::SiftFeatureDetector
 
typedef SIFT cv::SiftDescriptorExtractor
 

関数

CV_EXPORTS void cv::FAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true)
 
CV_EXPORTS void cv::FAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression, FastFeatureDetector::DetectorType type)
 Detects corners using the FAST algorithm [詳解]
 
CV_EXPORTS void cv::AGAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true)
 
CV_EXPORTS void cv::AGAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression, AgastFeatureDetector::DetectorType type)
 Detects corners using the AGAST algorithm [詳解]
 

詳解

型定義詳解

◆ DescriptorExtractor

Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. This section is devoted to computing descriptors represented as vectors in a multidimensional space. All objects that implement the vector descriptor extractors inherit the DescriptorExtractor interface.

◆ FeatureDetector

Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. All objects that implement keypoint detectors inherit the FeatureDetector interface.

関数詳解

◆ AGAST() [1/2]

CV_EXPORTS void cv::AGAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression,
AgastFeatureDetector::DetectorType  type 
)

Detects corners using the AGAST algorithm

引数
imagegrayscale image where keypoints (corners) are detected.
keypointskeypoints detected on the image.
thresholdthreshold on difference between intensity of the central pixel and pixels of a circle around this pixel.
nonmaxSuppressionif true, non-maximum suppression is applied to detected corners (keypoints).
typeone of the four neighborhoods as defined in the paper: AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d, AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16

For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results. The 32-bit binary tree tables were generated automatically from original code using perl script. The perl script and examples of tree generation are placed in features2d/doc folder. Detects corners using the AGAST algorithm by [mair2010_agast] .

◆ AGAST() [2/2]

CV_EXPORTS void cv::AGAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression = true 
)

これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。

◆ FAST() [1/2]

CV_EXPORTS void cv::FAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression,
FastFeatureDetector::DetectorType  type 
)

Detects corners using the FAST algorithm

引数
imagegrayscale image where keypoints (corners) are detected.
keypointskeypoints detected on the image.
thresholdthreshold on difference between intensity of the central pixel and pixels of a circle around this pixel.
nonmaxSuppressionif true, non-maximum suppression is applied to detected corners (keypoints).
typeone of the three neighborhoods as defined in the paper: FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, FastFeatureDetector::TYPE_5_8

Detects corners using the FAST algorithm by [Rosten06] .

覚え書き
In Python API, types are given as cv.FAST_FEATURE_DETECTOR_TYPE_5_8, cv.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner detection, use cv.FAST.detect() method.

◆ FAST() [2/2]

CV_EXPORTS void cv::FAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression = true 
)

これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。