OpenCV453
クラス | 列挙型 | 関数
Additional photo processing algorithms

クラス

class  cv::xphoto::TonemapDurand
 This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter and compresses contrast of the base layer thus preserving all the details. [詳解]
 
class  cv::xphoto::WhiteBalancer
 The base class for auto white balance algorithms. [詳解]
 
class  cv::xphoto::SimpleWB
 A simple white balance algorithm that works by independently stretching each of the input image channels to the specified range. For increased robustness it ignores the top and bottom $p\%$ of pixel values. [詳解]
 
class  cv::xphoto::GrayworldWB
 Gray-world white balance algorithm [詳解]
 
class  cv::xphoto::LearningBasedWB
 More sophisticated learning-based automatic white balance algorithm. [詳解]
 

列挙型

enum  cv::xphoto::TransformTypes { cv::xphoto::HAAR = 0 }
 BM3D transform types [詳解]
 
enum  cv::xphoto::Bm3dSteps { cv::xphoto::BM3D_STEPALL = 0 , cv::xphoto::BM3D_STEP1 = 1 , cv::xphoto::BM3D_STEP2 = 2 }
 BM3D algorithm steps [詳解]
 
enum  cv::xphoto::InpaintTypes { cv::xphoto::INPAINT_SHIFTMAP = 0 , cv::xphoto::INPAINT_FSR_BEST = 1 , cv::xphoto::INPAINT_FSR_FAST = 2 }
 Various inpainting algorithms [詳解]
 

関数

CV_EXPORTS_W void cv::xphoto::bm3dDenoising (InputArray src, InputOutputArray dstStep1, OutputArray dstStep2, float h=1, int templateWindowSize=4, int searchWindowSize=16, int blockMatchingStep1=2500, int blockMatchingStep2=400, int groupSize=8, int slidingStep=1, float beta=2.0f, int normType=cv::NORM_L2, int step=cv::xphoto::BM3D_STEPALL, int transformType=cv::xphoto::HAAR)
 Performs image denoising using the Block-Matching and 3D-filtering algorithm http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational optimizations. Noise expected to be a gaussian white noise. [詳解]
 
CV_EXPORTS_W void cv::xphoto::bm3dDenoising (InputArray src, OutputArray dst, float h=1, int templateWindowSize=4, int searchWindowSize=16, int blockMatchingStep1=2500, int blockMatchingStep2=400, int groupSize=8, int slidingStep=1, float beta=2.0f, int normType=cv::NORM_L2, int step=cv::xphoto::BM3D_STEPALL, int transformType=cv::xphoto::HAAR)
 Performs image denoising using the Block-Matching and 3D-filtering algorithm http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational optimizations. Noise expected to be a gaussian white noise. [詳解]
 
CV_EXPORTS_W void cv::xphoto::dctDenoising (const Mat &src, Mat &dst, const double sigma, const int psize=16)
 The function implements simple dct-based denoising [詳解]
 
CV_EXPORTS_W void cv::xphoto::inpaint (const Mat &src, const Mat &mask, Mat &dst, const int algorithmType)
 The function implements different single-image inpainting algorithms. [詳解]
 
CV_EXPORTS_W void cv::xphoto::oilPainting (InputArray src, OutputArray dst, int size, int dynRatio, int code)
 oilPainting See the book [Holzmann1988] for details. [詳解]
 
CV_EXPORTS_W void cv::xphoto::oilPainting (InputArray src, OutputArray dst, int size, int dynRatio)
 oilPainting See the book [Holzmann1988] for details. [詳解]
 
virtual CV_WRAP float cv::xphoto::TonemapDurand::getSaturation () const =0
 
virtual CV_WRAP void cv::xphoto::TonemapDurand::setSaturation (float saturation)=0
 
virtual CV_WRAP float cv::xphoto::TonemapDurand::getContrast () const =0
 
virtual CV_WRAP void cv::xphoto::TonemapDurand::setContrast (float contrast)=0
 
virtual CV_WRAP float cv::xphoto::TonemapDurand::getSigmaSpace () const =0
 
virtual CV_WRAP void cv::xphoto::TonemapDurand::setSigmaSpace (float sigma_space)=0
 
virtual CV_WRAP float cv::xphoto::TonemapDurand::getSigmaColor () const =0
 
virtual CV_WRAP void cv::xphoto::TonemapDurand::setSigmaColor (float sigma_color)=0
 
CV_EXPORTS_W Ptr< TonemapDurandcv::xphoto::createTonemapDurand (float gamma=1.0f, float contrast=4.0f, float saturation=1.0f, float sigma_color=2.0f, float sigma_space=2.0f)
 Creates TonemapDurand object [詳解]
 
CV_EXPORTS_W Ptr< SimpleWBcv::xphoto::createSimpleWB ()
 Creates an instance of SimpleWB
 
CV_EXPORTS_W Ptr< GrayworldWBcv::xphoto::createGrayworldWB ()
 Creates an instance of GrayworldWB
 
CV_EXPORTS_W Ptr< LearningBasedWBcv::xphoto::createLearningBasedWB (const String &path_to_model=String())
 Creates an instance of LearningBasedWB [詳解]
 
CV_EXPORTS_W void cv::xphoto::applyChannelGains (InputArray src, OutputArray dst, float gainB, float gainG, float gainR)
 Implements an efficient fixed-point approximation for applying channel gains, which is the last step of multiple white balance algorithms. [詳解]
 

詳解

列挙型詳解

◆ Bm3dSteps

BM3D algorithm steps

列挙値
BM3D_STEPALL 

Execute all steps of the algorithm

BM3D_STEP1 

Execute only first step of the algorithm

BM3D_STEP2 

Execute only second step of the algorithm

◆ InpaintTypes

Various inpainting algorithms

参照
inpaint
列挙値
INPAINT_SHIFTMAP 

This algorithm searches for dominant correspondences (transformations) of image patches and tries to seamlessly fill-in the area to be inpainted using this transformations

INPAINT_FSR_BEST 

Performs Frequency Selective Reconstruction (FSR). One of the two quality profiles BEST and FAST can be chosen, depending on the time available for reconstruction. See [GenserPCS2018] and [SeilerTIP2015] for details.

The algorithm may be utilized for the following areas of application:

  1. Error Concealment (Inpainting). The sampling mask indicates the missing pixels of the distorted input image to be reconstructed.
  2. Non-Regular Sampling. For more information on how to choose a good sampling mask, please review [GroscheICIP2018] and [GroscheIST2018].

1-channel grayscale or 3-channel BGR image are accepted.

Conventional accepted ranges:

  • 0-255 for CV_8U
  • 0-65535 for CV_16U
  • 0-1 for CV_32F/CV_64F.
INPAINT_FSR_FAST 

See #INPAINT_FSR_BEST

◆ TransformTypes

BM3D transform types

列挙値
HAAR 

Un-normalized Haar transform

関数詳解

◆ applyChannelGains()

CV_EXPORTS_W void cv::xphoto::applyChannelGains ( InputArray  src,
OutputArray  dst,
float  gainB,
float  gainG,
float  gainR 
)

Implements an efficient fixed-point approximation for applying channel gains, which is the last step of multiple white balance algorithms.

引数
srcInput three-channel image in the BGR color space (either CV_8UC3 or CV_16UC3)
dstOutput image of the same size and type as src.
gainBgain for the B channel
gainGgain for the G channel
gainRgain for the R channel

◆ bm3dDenoising() [1/2]

CV_EXPORTS_W void cv::xphoto::bm3dDenoising ( InputArray  src,
InputOutputArray  dstStep1,
OutputArray  dstStep2,
float  h = 1,
int  templateWindowSize = 4,
int  searchWindowSize = 16,
int  blockMatchingStep1 = 2500,
int  blockMatchingStep2 = 400,
int  groupSize = 8,
int  slidingStep = 1,
float  beta = 2.0f,
int  normType = cv::NORM_L2,
int  step = cv::xphoto::BM3D_STEPALL,
int  transformType = cv::xphoto::HAAR 
)

Performs image denoising using the Block-Matching and 3D-filtering algorithm http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational optimizations. Noise expected to be a gaussian white noise.

引数
srcInput 8-bit or 16-bit 1-channel image.
dstStep1Output image of the first step of BM3D with the same size and type as src.
dstStep2Output image of the second step of BM3D with the same size and type as src.
hParameter regulating filter strength. Big h value perfectly removes noise but also removes image details, smaller h value preserves details but also preserves some noise.
templateWindowSizeSize in pixels of the template patch that is used for block-matching. Should be power of 2.
searchWindowSizeSize in pixels of the window that is used to perform block-matching. Affect performance linearly: greater searchWindowsSize - greater denoising time. Must be larger than templateWindowSize.
blockMatchingStep1Block matching threshold for the first step of BM3D (hard thresholding), i.e. maximum distance for which two blocks are considered similar. Value expressed in euclidean distance.
blockMatchingStep2Block matching threshold for the second step of BM3D (Wiener filtering), i.e. maximum distance for which two blocks are considered similar. Value expressed in euclidean distance.
groupSizeMaximum size of the 3D group for collaborative filtering.
slidingStepSliding step to process every next reference block.
betaKaiser window parameter that affects the sidelobe attenuation of the transform of the window. Kaiser window is used in order to reduce border effects. To prevent usage of the window, set beta to zero.
normTypeNorm used to calculate distance between blocks. L2 is slower than L1 but yields more accurate results.
stepStep of BM3D to be executed. Possible variants are: step 1, step 2, both steps.
transformTypeType of the orthogonal transform used in collaborative filtering step. Currently only Haar transform is supported.

This function expected to be applied to grayscale images. Advanced usage of this function can be manual denoising of colored image in different colorspaces.

参照
fastNlMeansDenoising

◆ bm3dDenoising() [2/2]

CV_EXPORTS_W void cv::xphoto::bm3dDenoising ( InputArray  src,
OutputArray  dst,
float  h = 1,
int  templateWindowSize = 4,
int  searchWindowSize = 16,
int  blockMatchingStep1 = 2500,
int  blockMatchingStep2 = 400,
int  groupSize = 8,
int  slidingStep = 1,
float  beta = 2.0f,
int  normType = cv::NORM_L2,
int  step = cv::xphoto::BM3D_STEPALL,
int  transformType = cv::xphoto::HAAR 
)

Performs image denoising using the Block-Matching and 3D-filtering algorithm http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational optimizations. Noise expected to be a gaussian white noise.

引数
srcInput 8-bit or 16-bit 1-channel image.
dstOutput image with the same size and type as src.
hParameter regulating filter strength. Big h value perfectly removes noise but also removes image details, smaller h value preserves details but also preserves some noise.
templateWindowSizeSize in pixels of the template patch that is used for block-matching. Should be power of 2.
searchWindowSizeSize in pixels of the window that is used to perform block-matching. Affect performance linearly: greater searchWindowsSize - greater denoising time. Must be larger than templateWindowSize.
blockMatchingStep1Block matching threshold for the first step of BM3D (hard thresholding), i.e. maximum distance for which two blocks are considered similar. Value expressed in euclidean distance.
blockMatchingStep2Block matching threshold for the second step of BM3D (Wiener filtering), i.e. maximum distance for which two blocks are considered similar. Value expressed in euclidean distance.
groupSizeMaximum size of the 3D group for collaborative filtering.
slidingStepSliding step to process every next reference block.
betaKaiser window parameter that affects the sidelobe attenuation of the transform of the window. Kaiser window is used in order to reduce border effects. To prevent usage of the window, set beta to zero.
normTypeNorm used to calculate distance between blocks. L2 is slower than L1 but yields more accurate results.
stepStep of BM3D to be executed. Allowed are only BM3D_STEP1 and BM3D_STEPALL. BM3D_STEP2 is not allowed as it requires basic estimate to be present.
transformTypeType of the orthogonal transform used in collaborative filtering step. Currently only Haar transform is supported.

This function expected to be applied to grayscale images. Advanced usage of this function can be manual denoising of colored image in different colorspaces.

参照
fastNlMeansDenoising

◆ createLearningBasedWB()

CV_EXPORTS_W Ptr< LearningBasedWB > cv::xphoto::createLearningBasedWB ( const String &  path_to_model = String())

Creates an instance of LearningBasedWB

引数
path_to_modelPath to a .yml file with the model. If not specified, the default model is used

◆ createTonemapDurand()

CV_EXPORTS_W Ptr< TonemapDurand > cv::xphoto::createTonemapDurand ( float  gamma = 1.0f,
float  contrast = 4.0f,
float  saturation = 1.0f,
float  sigma_color = 2.0f,
float  sigma_space = 2.0f 
)

Creates TonemapDurand object

You need to set the OPENCV_ENABLE_NONFREE option in cmake to use those. Use them at your own risk.

引数
gammagamma value for gamma correction. See createTonemap
contrastresulting contrast on logarithmic scale, i. e. log(max / min), where max and min are maximum and minimum luminance values of the resulting image.
saturationsaturation enhancement value. See createTonemapDrago
sigma_colorbilateral filter sigma in color space
sigma_spacebilateral filter sigma in coordinate space

◆ dctDenoising()

CV_EXPORTS_W void cv::xphoto::dctDenoising ( const Mat src,
Mat dst,
const double  sigma,
const int  psize = 16 
)

The function implements simple dct-based denoising

http://www.ipol.im/pub/art/2011/ys-dct/.

引数
srcsource image
dstdestination image
sigmaexpected noise standard deviation
psizesize of block side where dct is computed
参照
fastNlMeansDenoising

◆ inpaint()

CV_EXPORTS_W void cv::xphoto::inpaint ( const Mat src,
const Mat mask,
Mat dst,
const int  algorithmType 
)

The function implements different single-image inpainting algorithms.

See the original papers [He2012] (Shiftmap) or [GenserPCS2018] and [SeilerTIP2015] (FSR) for details.

引数
srcsource image
  • #INPAINT_SHIFTMAP: it could be of any type and any number of channels from 1 to 4. In case of 3- and 4-channels images the function expect them in CIELab colorspace or similar one, where first color component shows intensity, while second and third shows colors. Nonetheless you can try any colorspaces.
  • #INPAINT_FSR_BEST or #INPAINT_FSR_FAST: 1-channel grayscale or 3-channel BGR image.
maskmask (#CV_8UC1), where non-zero pixels indicate valid image area, while zero pixels indicate area to be inpainted
dstdestination image
algorithmTypesee xphoto::InpaintTypes

◆ oilPainting() [1/2]

CV_EXPORTS_W void cv::xphoto::oilPainting ( InputArray  src,
OutputArray  dst,
int  size,
int  dynRatio 
)

oilPainting See the book [Holzmann1988] for details.

引数
srcInput three-channel or one channel image (either CV_8UC3 or CV_8UC1)
dstOutput image of the same size and type as src.
sizeneighbouring size is 2-size+1
dynRatioimage is divided by dynRatio before histogram processing

◆ oilPainting() [2/2]

CV_EXPORTS_W void cv::xphoto::oilPainting ( InputArray  src,
OutputArray  dst,
int  size,
int  dynRatio,
int  code 
)

oilPainting See the book [Holzmann1988] for details.

引数
srcInput three-channel or one channel image (either CV_8UC3 or CV_8UC1)
dstOutput image of the same size and type as src.
sizeneighbouring size is 2-size+1
dynRatioimage is divided by dynRatio before histogram processing
codecolor space conversion code(see ColorConversionCodes). Histogram will used only first plane