OpenCV453
|
kmeans -based class to train visual vocabulary using the bag of visual words approach. : [詳解]
#include <features2d.hpp>
cv::BOWTrainerを継承しています。
公開メンバ関数 | |
CV_WRAP | BOWKMeansTrainer (int clusterCount, const TermCriteria &termcrit=TermCriteria(), int attempts=3, int flags=KMEANS_PP_CENTERS) |
The constructor. [詳解] | |
virtual CV_WRAP Mat | cluster () const CV_OVERRIDE |
virtual CV_WRAP Mat | cluster (const Mat &descriptors) const CV_OVERRIDE |
Clusters train descriptors. [詳解] | |
![]() | |
CV_WRAP void | add (const Mat &descriptors) |
Adds descriptors to a training set. [詳解] | |
CV_WRAP const std::vector< Mat > & | getDescriptors () const |
Returns a training set of descriptors. | |
CV_WRAP int | descriptorsCount () const |
Returns the count of all descriptors stored in the training set. | |
virtual CV_WRAP void | clear () |
限定公開変数類 | |
int | clusterCount |
TermCriteria | termcrit |
int | attempts |
int | flags |
![]() | |
std::vector< Mat > | descriptors |
int | size |
kmeans -based class to train visual vocabulary using the bag of visual words approach. :
CV_WRAP cv::BOWKMeansTrainer::BOWKMeansTrainer | ( | int | clusterCount, |
const TermCriteria & | termcrit = TermCriteria() , |
||
int | attempts = 3 , |
||
int | flags = KMEANS_PP_CENTERS |
||
) |
The constructor.
|
virtual |
これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。
cv::BOWTrainerを実装しています。
Clusters train descriptors.
descriptors | Descriptors to cluster. Each row of the descriptors matrix is a descriptor. Descriptors are not added to the inner train descriptor set. |
The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first variant of the method, train descriptors stored in the object are clustered. In the second variant, input descriptors are clustered.
cv::BOWTrainerを実装しています。