OpenCV453
公開メンバ関数 | 限定公開変数類 | 全メンバ一覧
cv::BOWTrainer クラスabstract

Abstract base class for training the bag of visual words vocabulary from a set of descriptors. [詳解]

#include <features2d.hpp>

cv::BOWKMeansTrainerに継承されています。

公開メンバ関数

CV_WRAP void add (const Mat &descriptors)
 Adds descriptors to a training set. [詳解]
 
CV_WRAP const std::vector< Mat > & getDescriptors () const
 Returns a training set of descriptors.
 
CV_WRAP int descriptorsCount () const
 Returns the count of all descriptors stored in the training set.
 
virtual CV_WRAP void clear ()
 
virtual CV_WRAP Mat cluster () const =0
 
virtual CV_WRAP Mat cluster (const Mat &descriptors) const =0
 Clusters train descriptors. [詳解]
 

限定公開変数類

std::vector< Matdescriptors
 
int size
 

詳解

Abstract base class for training the bag of visual words vocabulary from a set of descriptors.

For details, see, for example, Visual Categorization with Bags of Keypoints by Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :

関数詳解

◆ add()

CV_WRAP void cv::BOWTrainer::add ( const Mat descriptors)

Adds descriptors to a training set.

引数
descriptorsDescriptors to add to a training set. Each row of the descriptors matrix is a descriptor.

The training set is clustered using clustermethod to construct the vocabulary.

◆ cluster() [1/2]

virtual CV_WRAP Mat cv::BOWTrainer::cluster ( ) const
pure virtual

これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。

cv::BOWKMeansTrainerで実装されています。

◆ cluster() [2/2]

virtual CV_WRAP Mat cv::BOWTrainer::cluster ( const Mat descriptors) const
pure virtual

Clusters train descriptors.

引数
descriptorsDescriptors to cluster. Each row of the descriptors matrix is a descriptor. Descriptors are not added to the inner train descriptor set.

The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first variant of the method, train descriptors stored in the object are clustered. In the second variant, input descriptors are clustered.

cv::BOWKMeansTrainerで実装されています。


このクラス詳解は次のファイルから抽出されました: