Linear Discriminant Analysis
[詳解]
#include <core.hpp>
|
static Mat | subspaceProject (InputArray W, InputArray mean, InputArray src) |
|
static Mat | subspaceReconstruct (InputArray W, InputArray mean, InputArray src) |
|
|
void | lda (InputArrayOfArrays src, InputArray labels) |
|
|
int | _num_components |
|
Mat | _eigenvectors |
|
Mat | _eigenvalues |
|
Linear Discriminant Analysis
- todo:
- document this class
◆ LDA()
cv::LDA::LDA |
( |
InputArrayOfArrays |
src, |
|
|
InputArray |
labels, |
|
|
int |
num_components = 0 |
|
) |
| |
Initializes and performs a Discriminant Analysis with Fisher's Optimization Criterion on given data in src and corresponding labels in labels. If 0 (or less) number of components are given, they are automatically determined for given data in computation.
◆ ~LDA()
◆ compute()
void cv::LDA::compute |
( |
InputArrayOfArrays |
src, |
|
|
InputArray |
labels |
|
) |
| |
Compute the discriminants for data in src (row aligned) and labels.
◆ eigenvalues()
Mat cv::LDA::eigenvalues |
( |
| ) |
const |
|
inline |
Returns the eigenvalues of this LDA.
◆ eigenvectors()
Mat cv::LDA::eigenvectors |
( |
| ) |
const |
|
inline |
Returns the eigenvectors of this LDA.
◆ load() [1/2]
◆ load() [2/2]
void cv::LDA::load |
( |
const String & |
filename | ) |
|
Deserializes this object from a given filename.
◆ project()
Mat cv::LDA::project |
( |
InputArray |
src | ) |
|
Projects samples into the LDA subspace. src may be one or more row aligned samples.
◆ reconstruct()
Mat cv::LDA::reconstruct |
( |
InputArray |
src | ) |
|
Reconstructs projections from the LDA subspace. src may be one or more row aligned projections.
◆ save() [1/2]
void cv::LDA::save |
( |
const String & |
filename | ) |
const |
Serializes this object to a given filename.
◆ save() [2/2]
このクラス詳解は次のファイルから抽出されました: