|
CV_WRAP | DetectionModel (const String &model, const String &config="") |
| Create detection model from network represented in one of the supported formats. An order of model and config arguments does not matter. [詳解]
|
|
CV_WRAP | DetectionModel (const Net &network) |
| Create model from deep learning network. [詳解]
|
|
CV_WRAP DetectionModel & | setNmsAcrossClasses (bool value) |
| nmsAcrossClasses defaults to false, such that when non max suppression is used during the detect() function, it will do so per-class. This function allows you to toggle this behaviour. [詳解]
|
|
CV_WRAP bool | getNmsAcrossClasses () |
| Getter for nmsAcrossClasses. This variable defaults to false, such that when non max suppression is used during the detect() function, it will do so only per-class
|
|
CV_WRAP void | detect (InputArray frame, CV_OUT std::vector< int > &classIds, CV_OUT std::vector< float > &confidences, CV_OUT std::vector< Rect > &boxes, float confThreshold=0.5f, float nmsThreshold=0.0f) |
| Given the input frame, create input blob, run net and return result detections. [詳解]
|
|
| Model (const Model &)=default |
|
| Model (Model &&)=default |
|
Model & | operator= (const Model &)=default |
|
Model & | operator= (Model &&)=default |
|
CV_WRAP | Model (const String &model, const String &config="") |
| Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter. [詳解]
|
|
CV_WRAP | Model (const Net &network) |
| Create model from deep learning network. [詳解]
|
|
CV_WRAP Model & | setInputSize (const Size &size) |
| Set input size for frame. [詳解]
|
|
CV_WRAP Model & | setInputSize (int width, int height) |
|
CV_WRAP Model & | setInputMean (const Scalar &mean) |
| Set mean value for frame. [詳解]
|
|
CV_WRAP Model & | setInputScale (double scale) |
| Set scalefactor value for frame. [詳解]
|
|
CV_WRAP Model & | setInputCrop (bool crop) |
| Set flag crop for frame. [詳解]
|
|
CV_WRAP Model & | setInputSwapRB (bool swapRB) |
| Set flag swapRB for frame. [詳解]
|
|
CV_WRAP void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
| Set preprocessing parameters for frame. [詳解]
|
|
CV_WRAP void | predict (InputArray frame, OutputArrayOfArrays outs) const |
| Given the input frame, create input blob, run net and return the output blobs . [詳解]
|
|
CV_WRAP Model & | setPreferableBackend (dnn::Backend backendId) |
|
CV_WRAP Model & | setPreferableTarget (dnn::Target targetId) |
|
CV_DEPRECATED_EXTERNAL | operator Net & () const |
|
Net & | getNetwork_ () const |
|
Net & | getNetwork_ () |
|
Impl * | getImpl () const |
|
Impl & | getImplRef () const |
|
This class represents high-level API for object detection networks.
DetectionModel allows to set params for preprocessing input image. DetectionModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return result detections. For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.