OpenCV453
|
モジュール | |
Partial List of Implemented Layers | |
Utilities for New Layers Registration | |
クラス | |
struct | cv::dnn::DictValue |
This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64. [詳解] | |
class | cv::dnn::Dict |
This class implements name-value dictionary, values are instances of DictValue. [詳解] | |
class | cv::dnn::LayerParams |
This class provides all data needed to initialize layer. [詳解] | |
class | cv::dnn::BackendNode |
Derivatives of this class encapsulates functions of certain backends. [詳解] | |
class | cv::dnn::BackendWrapper |
Derivatives of this class wraps cv::Mat for different backends and targets. [詳解] | |
class | cv::dnn::Layer |
This interface class allows to build new Layers - are building blocks of networks. [詳解] | |
class | cv::dnn::Net |
This class allows to create and manipulate comprehensive artificial neural networks. [詳解] | |
class | cv::dnn::Model |
This class is presented high-level API for neural networks. [詳解] | |
class | cv::dnn::ClassificationModel |
This class represents high-level API for classification models. [詳解] | |
class | cv::dnn::KeypointsModel |
This class represents high-level API for keypoints models [詳解] | |
class | cv::dnn::SegmentationModel |
This class represents high-level API for segmentation models [詳解] | |
class | cv::dnn::DetectionModel |
This class represents high-level API for object detection networks. [詳解] | |
class | cv::dnn::TextRecognitionModel |
This class represents high-level API for text recognition networks. [詳解] | |
class | cv::dnn::TextDetectionModel |
Base class for text detection networks [詳解] | |
class | cv::dnn::TextDetectionModel_EAST |
This class represents high-level API for text detection DL networks compatible with EAST model. [詳解] | |
class | cv::dnn::TextDetectionModel_DB |
This class represents high-level API for text detection DL networks compatible with DB model. [詳解] | |
型定義 | |
typedef std::vector< int > | cv::dnn::MatShape |
列挙型 | |
enum | cv::dnn::Backend { cv::dnn::DNN_BACKEND_DEFAULT = 0 , DNN_BACKEND_HALIDE , cv::dnn::DNN_BACKEND_INFERENCE_ENGINE , DNN_BACKEND_OPENCV , DNN_BACKEND_VKCOM , DNN_BACKEND_CUDA } |
Enum of computation backends supported by layers. [詳解] | |
enum | cv::dnn::Target { DNN_TARGET_CPU = 0 , DNN_TARGET_OPENCL , DNN_TARGET_OPENCL_FP16 , DNN_TARGET_MYRIAD , DNN_TARGET_VULKAN , cv::dnn::DNN_TARGET_FPGA , DNN_TARGET_CUDA , DNN_TARGET_CUDA_FP16 , DNN_TARGET_HDDL } |
Enum of target devices for computations. [詳解] | |
関数 | |
CV_EXPORTS std::vector< std::pair< Backend, Target > > | cv::dnn::getAvailableBackends () |
CV_EXPORTS_W std::vector< Target > | cv::dnn::getAvailableTargets (dnn::Backend be) |
CV_EXPORTS void | cv::dnn::enableModelDiagnostics (bool isDiagnosticsMode) |
Enables detailed logging of the DNN model loading with CV DNN API. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromDarknet (const String &cfgFile, const String &darknetModel=String()) |
Reads a network model stored in Darknet model files. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromDarknet (const std::vector< uchar > &bufferCfg, const std::vector< uchar > &bufferModel=std::vector< uchar >()) |
Reads a network model stored in Darknet model files. [詳解] | |
CV_EXPORTS Net | cv::dnn::readNetFromDarknet (const char *bufferCfg, size_t lenCfg, const char *bufferModel=NULL, size_t lenModel=0) |
Reads a network model stored in Darknet model files. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromCaffe (const String &prototxt, const String &caffeModel=String()) |
Reads a network model stored in Caffe framework's format. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromCaffe (const std::vector< uchar > &bufferProto, const std::vector< uchar > &bufferModel=std::vector< uchar >()) |
Reads a network model stored in Caffe model in memory. [詳解] | |
CV_EXPORTS Net | cv::dnn::readNetFromCaffe (const char *bufferProto, size_t lenProto, const char *bufferModel=NULL, size_t lenModel=0) |
Reads a network model stored in Caffe model in memory. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromTensorflow (const String &model, const String &config=String()) |
Reads a network model stored in TensorFlow framework's format. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromTensorflow (const std::vector< uchar > &bufferModel, const std::vector< uchar > &bufferConfig=std::vector< uchar >()) |
Reads a network model stored in TensorFlow framework's format. [詳解] | |
CV_EXPORTS Net | cv::dnn::readNetFromTensorflow (const char *bufferModel, size_t lenModel, const char *bufferConfig=NULL, size_t lenConfig=0) |
Reads a network model stored in TensorFlow framework's format. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromTorch (const String &model, bool isBinary=true, bool evaluate=true) |
Reads a network model stored in Torch7 framework's format. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNet (const String &model, const String &config="", const String &framework="") |
Read deep learning network represented in one of the supported formats. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNet (const String &framework, const std::vector< uchar > &bufferModel, const std::vector< uchar > &bufferConfig=std::vector< uchar >()) |
Read deep learning network represented in one of the supported formats. [詳解] | |
CV_EXPORTS_W Mat | cv::dnn::readTorchBlob (const String &filename, bool isBinary=true) |
Loads blob which was serialized as torch.Tensor object of Torch7 framework. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromModelOptimizer (const String &xml, const String &bin) |
Load a network from Intel's Model Optimizer intermediate representation. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromModelOptimizer (const std::vector< uchar > &bufferModelConfig, const std::vector< uchar > &bufferWeights) |
Load a network from Intel's Model Optimizer intermediate representation. [詳解] | |
CV_EXPORTS Net | cv::dnn::readNetFromModelOptimizer (const uchar *bufferModelConfigPtr, size_t bufferModelConfigSize, const uchar *bufferWeightsPtr, size_t bufferWeightsSize) |
Load a network from Intel's Model Optimizer intermediate representation. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromONNX (const String &onnxFile) |
Reads a network model ONNX. [詳解] | |
CV_EXPORTS Net | cv::dnn::readNetFromONNX (const char *buffer, size_t sizeBuffer) |
Reads a network model from ONNX in-memory buffer. [詳解] | |
CV_EXPORTS_W Net | cv::dnn::readNetFromONNX (const std::vector< uchar > &buffer) |
Reads a network model from ONNX in-memory buffer. [詳解] | |
CV_EXPORTS_W Mat | cv::dnn::readTensorFromONNX (const String &path) |
Creates blob from .pb file. [詳解] | |
CV_EXPORTS_W Mat | cv::dnn::blobFromImage (InputArray image, double scalefactor=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
Creates 4-dimensional blob from image. Optionally resizes and crops image from center, subtract mean values, scales values by scalefactor , swap Blue and Red channels. [詳解] | |
CV_EXPORTS void | cv::dnn::blobFromImage (InputArray image, OutputArray blob, double scalefactor=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
Creates 4-dimensional blob from image. [詳解] | |
CV_EXPORTS_W Mat | cv::dnn::blobFromImages (InputArrayOfArrays images, double scalefactor=1.0, Size size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
Creates 4-dimensional blob from series of images. Optionally resizes and crops images from center, subtract mean values, scales values by scalefactor , swap Blue and Red channels. [詳解] | |
CV_EXPORTS void | cv::dnn::blobFromImages (InputArrayOfArrays images, OutputArray blob, double scalefactor=1.0, Size size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
Creates 4-dimensional blob from series of images. [詳解] | |
CV_EXPORTS_W void | cv::dnn::imagesFromBlob (const cv::Mat &blob_, OutputArrayOfArrays images_) |
Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure (std::vector<cv::Mat>). [詳解] | |
CV_EXPORTS_W void | cv::dnn::shrinkCaffeModel (const String &src, const String &dst, const std::vector< String > &layersTypes=std::vector< String >()) |
Convert all weights of Caffe network to half precision floating point. [詳解] | |
CV_EXPORTS_W void | cv::dnn::writeTextGraph (const String &model, const String &output) |
Create a text representation for a binary network stored in protocol buffer format. [詳解] | |
CV_EXPORTS void | cv::dnn::NMSBoxes (const std::vector< Rect > &bboxes, const std::vector< float > &scores, const float score_threshold, const float nms_threshold, CV_OUT std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
Performs non maximum suppression given boxes and corresponding scores. [詳解] | |
CV_EXPORTS_W void | cv::dnn::NMSBoxes (const std::vector< Rect2d > &bboxes, const std::vector< float > &scores, const float score_threshold, const float nms_threshold, CV_OUT std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
変数 | |
class CV_EXPORTS | cv::dnn::ActivationLayer |
This module contains:
Functionality of this module is designed only for forward pass computations (i.e. network testing). A network training is in principle not supported.
enum cv::dnn::Backend |
Enum of computation backends supported by layers.
enum cv::dnn::Target |
CV_EXPORTS_W Mat cv::dnn::blobFromImage | ( | InputArray | image, |
double | scalefactor = 1.0 , |
||
const Size & | size = Size() , |
||
const Scalar & | mean = Scalar() , |
||
bool | swapRB = false , |
||
bool | crop = false , |
||
int | ddepth = CV_32F |
||
) |
Creates 4-dimensional blob from image. Optionally resizes and crops image
from center, subtract mean
values, scales values by scalefactor
, swap Blue and Red channels.
image | input image (with 1-, 3- or 4-channels). |
size | spatial size for output image |
mean | scalar with mean values which are subtracted from channels. Values are intended to be in (mean-R, mean-G, mean-B) order if image has BGR ordering and swapRB is true. |
scalefactor | multiplier for image values. |
swapRB | flag which indicates that swap first and last channels in 3-channel image is necessary. |
crop | flag which indicates whether image will be cropped after resize or not |
ddepth | Depth of output blob. Choose CV_32F or CV_8U. |
if crop
is true, input image is resized so one side after resize is equal to corresponding dimension in size
and another one is equal or larger. Then, crop from the center is performed. If crop
is false, direct resize without cropping and preserving aspect ratio is performed.
CV_EXPORTS void cv::dnn::blobFromImage | ( | InputArray | image, |
OutputArray | blob, | ||
double | scalefactor = 1.0 , |
||
const Size & | size = Size() , |
||
const Scalar & | mean = Scalar() , |
||
bool | swapRB = false , |
||
bool | crop = false , |
||
int | ddepth = CV_32F |
||
) |
Creates 4-dimensional blob from image.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
CV_EXPORTS_W Mat cv::dnn::blobFromImages | ( | InputArrayOfArrays | images, |
double | scalefactor = 1.0 , |
||
Size | size = Size() , |
||
const Scalar & | mean = Scalar() , |
||
bool | swapRB = false , |
||
bool | crop = false , |
||
int | ddepth = CV_32F |
||
) |
Creates 4-dimensional blob from series of images. Optionally resizes and crops images
from center, subtract mean
values, scales values by scalefactor
, swap Blue and Red channels.
images | input images (all with 1-, 3- or 4-channels). |
size | spatial size for output image |
mean | scalar with mean values which are subtracted from channels. Values are intended to be in (mean-R, mean-G, mean-B) order if image has BGR ordering and swapRB is true. |
scalefactor | multiplier for images values. |
swapRB | flag which indicates that swap first and last channels in 3-channel image is necessary. |
crop | flag which indicates whether image will be cropped after resize or not |
ddepth | Depth of output blob. Choose CV_32F or CV_8U. |
if crop
is true, input image is resized so one side after resize is equal to corresponding dimension in size
and another one is equal or larger. Then, crop from the center is performed. If crop
is false, direct resize without cropping and preserving aspect ratio is performed.
CV_EXPORTS void cv::dnn::blobFromImages | ( | InputArrayOfArrays | images, |
OutputArray | blob, | ||
double | scalefactor = 1.0 , |
||
Size | size = Size() , |
||
const Scalar & | mean = Scalar() , |
||
bool | swapRB = false , |
||
bool | crop = false , |
||
int | ddepth = CV_32F |
||
) |
Creates 4-dimensional blob from series of images.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
CV_EXPORTS void cv::dnn::enableModelDiagnostics | ( | bool | isDiagnosticsMode | ) |
Enables detailed logging of the DNN model loading with CV DNN API.
[in] | isDiagnosticsMode | Indicates whether diagnostic mode should be set. |
Diagnostic mode provides detailed logging of the model loading stage to explore potential problems (ex.: not implemented layer type).
CV_EXPORTS_W void cv::dnn::imagesFromBlob | ( | const cv::Mat & | blob_, |
OutputArrayOfArrays | images_ | ||
) |
Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure (std::vector<cv::Mat>).
[in] | blob_ | 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from which you would like to extract the images. |
[out] | images_ | array of 2D Mat containing the images extracted from the blob in floating point precision (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth). |
CV_EXPORTS void cv::dnn::NMSBoxes | ( | const std::vector< Rect > & | bboxes, |
const std::vector< float > & | scores, | ||
const float | score_threshold, | ||
const float | nms_threshold, | ||
CV_OUT std::vector< int > & | indices, | ||
const float | eta = 1.f , |
||
const int | top_k = 0 |
||
) |
Performs non maximum suppression given boxes and corresponding scores.
bboxes | a set of bounding boxes to apply NMS. |
scores | a set of corresponding confidences. |
score_threshold | a threshold used to filter boxes by score. |
nms_threshold | a threshold used in non maximum suppression. |
indices | the kept indices of bboxes after NMS. |
eta | a coefficient in adaptive threshold formula: ![]() |
top_k | if >0 , keep at most top_k picked indices. |
CV_EXPORTS_W Net cv::dnn::readNet | ( | const String & | framework, |
const std::vector< uchar > & | bufferModel, | ||
const std::vector< uchar > & | bufferConfig = std::vector< uchar >() |
||
) |
Read deep learning network represented in one of the supported formats.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
[in] | framework | Name of origin framework. |
[in] | bufferModel | A buffer with a content of binary file with weights |
[in] | bufferConfig | A buffer with a content of text file contains network configuration. |
CV_EXPORTS_W Net cv::dnn::readNet | ( | const String & | model, |
const String & | config = "" , |
||
const String & | framework = "" |
||
) |
Read deep learning network represented in one of the supported formats.
[in] | model | Binary file contains trained weights. The following file extensions are expected for models from different frameworks:
|
[in] | config | Text file contains network configuration. It could be a file with the following extensions:
|
[in] | framework | Explicit framework name tag to determine a format. |
This function automatically detects an origin framework of trained model and calls an appropriate function such readNetFromCaffe, readNetFromTensorflow, readNetFromTorch or readNetFromDarknet. An order of model
and config
arguments does not matter.
CV_EXPORTS Net cv::dnn::readNetFromCaffe | ( | const char * | bufferProto, |
size_t | lenProto, | ||
const char * | bufferModel = NULL , |
||
size_t | lenModel = 0 |
||
) |
Reads a network model stored in Caffe model in memory.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
bufferProto | buffer containing the content of the .prototxt file |
lenProto | length of bufferProto |
bufferModel | buffer containing the content of the .caffemodel file |
lenModel | length of bufferModel |
CV_EXPORTS_W Net cv::dnn::readNetFromCaffe | ( | const std::vector< uchar > & | bufferProto, |
const std::vector< uchar > & | bufferModel = std::vector< uchar >() |
||
) |
Reads a network model stored in Caffe model in memory.
bufferProto | buffer containing the content of the .prototxt file |
bufferModel | buffer containing the content of the .caffemodel file |
CV_EXPORTS_W Net cv::dnn::readNetFromCaffe | ( | const String & | prototxt, |
const String & | caffeModel = String() |
||
) |
CV_EXPORTS Net cv::dnn::readNetFromDarknet | ( | const char * | bufferCfg, |
size_t | lenCfg, | ||
const char * | bufferModel = NULL , |
||
size_t | lenModel = 0 |
||
) |
Reads a network model stored in Darknet model files.
bufferCfg | A buffer contains a content of .cfg file with text description of the network architecture. |
lenCfg | Number of bytes to read from bufferCfg |
bufferModel | A buffer contains a content of .weights file with learned network. |
lenModel | Number of bytes to read from bufferModel |
CV_EXPORTS_W Net cv::dnn::readNetFromDarknet | ( | const std::vector< uchar > & | bufferCfg, |
const std::vector< uchar > & | bufferModel = std::vector< uchar >() |
||
) |
CV_EXPORTS_W Net cv::dnn::readNetFromDarknet | ( | const String & | cfgFile, |
const String & | darknetModel = String() |
||
) |
CV_EXPORTS_W Net cv::dnn::readNetFromModelOptimizer | ( | const std::vector< uchar > & | bufferModelConfig, |
const std::vector< uchar > & | bufferWeights | ||
) |
Load a network from Intel's Model Optimizer intermediate representation.
[in] | bufferModelConfig | Buffer contains XML configuration with network's topology. |
[in] | bufferWeights | Buffer contains binary data with trained weights. |
CV_EXPORTS_W Net cv::dnn::readNetFromModelOptimizer | ( | const String & | xml, |
const String & | bin | ||
) |
CV_EXPORTS Net cv::dnn::readNetFromModelOptimizer | ( | const uchar * | bufferModelConfigPtr, |
size_t | bufferModelConfigSize, | ||
const uchar * | bufferWeightsPtr, | ||
size_t | bufferWeightsSize | ||
) |
Load a network from Intel's Model Optimizer intermediate representation.
[in] | bufferModelConfigPtr | Pointer to buffer which contains XML configuration with network's topology. |
[in] | bufferModelConfigSize | Binary size of XML configuration data. |
[in] | bufferWeightsPtr | Pointer to buffer which contains binary data with trained weights. |
[in] | bufferWeightsSize | Binary size of trained weights data. |
CV_EXPORTS Net cv::dnn::readNetFromONNX | ( | const char * | buffer, |
size_t | sizeBuffer | ||
) |
Reads a network model from ONNX in-memory buffer.
buffer | memory address of the first byte of the buffer. |
sizeBuffer | size of the buffer. |
CV_EXPORTS_W Net cv::dnn::readNetFromONNX | ( | const std::vector< uchar > & | buffer | ) |
Reads a network model from ONNX in-memory buffer.
buffer | in-memory buffer that stores the ONNX model bytes. |
CV_EXPORTS_W Net cv::dnn::readNetFromONNX | ( | const String & | onnxFile | ) |
Reads a network model ONNX.
onnxFile | path to the .onnx file with text description of the network architecture. |
CV_EXPORTS Net cv::dnn::readNetFromTensorflow | ( | const char * | bufferModel, |
size_t | lenModel, | ||
const char * | bufferConfig = NULL , |
||
size_t | lenConfig = 0 |
||
) |
Reads a network model stored in TensorFlow framework's format.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
bufferModel | buffer containing the content of the pb file |
lenModel | length of bufferModel |
bufferConfig | buffer containing the content of the pbtxt file |
lenConfig | length of bufferConfig |
CV_EXPORTS_W Net cv::dnn::readNetFromTensorflow | ( | const std::vector< uchar > & | bufferModel, |
const std::vector< uchar > & | bufferConfig = std::vector< uchar >() |
||
) |
Reads a network model stored in TensorFlow framework's format.
bufferModel | buffer containing the content of the pb file |
bufferConfig | buffer containing the content of the pbtxt file |
CV_EXPORTS_W Net cv::dnn::readNetFromTensorflow | ( | const String & | model, |
const String & | config = String() |
||
) |
Reads a network model stored in TensorFlow framework's format.
model | path to the .pb file with binary protobuf description of the network architecture |
config | path to the .pbtxt file that contains text graph definition in protobuf format. Resulting Net object is built by text graph using weights from a binary one that let us make it more flexible. |
CV_EXPORTS_W Net cv::dnn::readNetFromTorch | ( | const String & | model, |
bool | isBinary = true , |
||
bool | evaluate = true |
||
) |
Reads a network model stored in Torch7 framework's format.
model | path to the file, dumped from Torch by using torch.save() function. |
isBinary | specifies whether the network was serialized in ascii mode or binary. |
evaluate | specifies testing phase of network. If true, it's similar to evaluate() method in Torch. |
long
type of C language, which has various bit-length on different systems.The loading file must contain serialized nn.Module object with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
List of supported layers (i.e. object instances derived from Torch nn.Module class):
Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
CV_EXPORTS_W Mat cv::dnn::readTensorFromONNX | ( | const String & | path | ) |
CV_EXPORTS_W Mat cv::dnn::readTorchBlob | ( | const String & | filename, |
bool | isBinary = true |
||
) |
Loads blob which was serialized as torch.Tensor object of Torch7 framework.
CV_EXPORTS_W void cv::dnn::shrinkCaffeModel | ( | const String & | src, |
const String & | dst, | ||
const std::vector< String > & | layersTypes = std::vector< String >() |
||
) |
Convert all weights of Caffe network to half precision floating point.
src | Path to origin model from Caffe framework contains single precision floating point weights (usually has .caffemodel extension). |
dst | Path to destination model with updated weights. |
layersTypes | Set of layers types which parameters will be converted. By default, converts only Convolutional and Fully-Connected layers' weights. |
CV_EXPORTS_W void cv::dnn::writeTextGraph | ( | const String & | model, |
const String & | output | ||
) |
Create a text representation for a binary network stored in protocol buffer format.
[in] | model | A path to binary network. |
[in] | output | A path to output text file to be created. |