|
CV_WRAP | TextRecognitionModel (const Net &network) |
| Create Text Recognition model from deep learning network Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method [詳解]
|
|
CV_WRAP | TextRecognitionModel (const std::string &model, const std::string &config="") |
| Create text recognition model from network represented in one of the supported formats Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method [詳解]
|
|
CV_WRAP TextRecognitionModel & | setDecodeType (const std::string &decodeType) |
| Set the decoding method of translating the network output into string [詳解]
|
|
CV_WRAP const std::string & | getDecodeType () const |
| Get the decoding method [詳解]
|
|
CV_WRAP TextRecognitionModel & | setVocabulary (const std::vector< std::string > &vocabulary) |
| Set the vocabulary for recognition. [詳解]
|
|
CV_WRAP const std::vector< std::string > & | getVocabulary () const |
| Get the vocabulary for recognition. [詳解]
|
|
CV_WRAP std::string | recognize (InputArray frame) const |
| Given the input frame, create input blob, run net and return recognition result [詳解]
|
|
CV_WRAP void | recognize (InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector< std::string > &results) const |
| Given the input frame, create input blob, run net and return recognition result [詳解]
|
|
| Model (const Model &)=default |
|
| Model (Model &&)=default |
|
Model & | operator= (const Model &)=default |
|
Model & | operator= (Model &&)=default |
|
CV_WRAP | Model (const String &model, const String &config="") |
| Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter. [詳解]
|
|
CV_WRAP | Model (const Net &network) |
| Create model from deep learning network. [詳解]
|
|
CV_WRAP Model & | setInputSize (const Size &size) |
| Set input size for frame. [詳解]
|
|
CV_WRAP Model & | setInputSize (int width, int height) |
|
CV_WRAP Model & | setInputMean (const Scalar &mean) |
| Set mean value for frame. [詳解]
|
|
CV_WRAP Model & | setInputScale (double scale) |
| Set scalefactor value for frame. [詳解]
|
|
CV_WRAP Model & | setInputCrop (bool crop) |
| Set flag crop for frame. [詳解]
|
|
CV_WRAP Model & | setInputSwapRB (bool swapRB) |
| Set flag swapRB for frame. [詳解]
|
|
CV_WRAP void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
| Set preprocessing parameters for frame. [詳解]
|
|
CV_WRAP void | predict (InputArray frame, OutputArrayOfArrays outs) const |
| Given the input frame, create input blob, run net and return the output blobs . [詳解]
|
|
CV_WRAP Model & | setPreferableBackend (dnn::Backend backendId) |
|
CV_WRAP Model & | setPreferableTarget (dnn::Target targetId) |
|
CV_DEPRECATED_EXTERNAL | operator Net & () const |
|
Net & | getNetwork_ () const |
|
Net & | getNetwork_ () |
|
Impl * | getImpl () const |
|
Impl & | getImplRef () const |
|
This class represents high-level API for text recognition networks.
TextRecognitionModel allows to set params for preprocessing input image. TextRecognitionModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return recognition result. For TextRecognitionModel, CRNN-CTC is supported.