OpenCV453
|
This class represents high-level API for keypoints models [詳解]
#include <dnn.hpp>
cv::dnn::Modelを継承しています。
公開メンバ関数 | |
CV_WRAP | KeypointsModel (const String &model, const String &config="") |
Create keypoints model from network represented in one of the supported formats. An order of model and config arguments does not matter. [詳解] | |
CV_WRAP | KeypointsModel (const Net &network) |
Create model from deep learning network. [詳解] | |
CV_WRAP std::vector< Point2f > | estimate (InputArray frame, float thresh=0.5) |
Given the input frame, create input blob, run net [詳解] | |
![]() | |
Model (const Model &)=default | |
Model (Model &&)=default | |
Model & | operator= (const Model &)=default |
Model & | operator= (Model &&)=default |
CV_WRAP | Model (const String &model, const String &config="") |
Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter. [詳解] | |
CV_WRAP | Model (const Net &network) |
Create model from deep learning network. [詳解] | |
CV_WRAP Model & | setInputSize (const Size &size) |
Set input size for frame. [詳解] | |
CV_WRAP Model & | setInputSize (int width, int height) |
CV_WRAP Model & | setInputMean (const Scalar &mean) |
Set mean value for frame. [詳解] | |
CV_WRAP Model & | setInputScale (double scale) |
Set scalefactor value for frame. [詳解] | |
CV_WRAP Model & | setInputCrop (bool crop) |
Set flag crop for frame. [詳解] | |
CV_WRAP Model & | setInputSwapRB (bool swapRB) |
Set flag swapRB for frame. [詳解] | |
CV_WRAP void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
Set preprocessing parameters for frame. [詳解] | |
CV_WRAP void | predict (InputArray frame, OutputArrayOfArrays outs) const |
Given the input frame, create input blob, run net and return the output blobs . [詳解] | |
CV_WRAP Model & | setPreferableBackend (dnn::Backend backendId) |
CV_WRAP Model & | setPreferableTarget (dnn::Target targetId) |
CV_DEPRECATED_EXTERNAL | operator Net & () const |
Net & | getNetwork_ () const |
Net & | getNetwork_ () |
Impl * | getImpl () const |
Impl & | getImplRef () const |
その他の継承メンバ | |
![]() | |
Ptr< Impl > | impl |
This class represents high-level API for keypoints models
KeypointsModel allows to set params for preprocessing input image. KeypointsModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
CV_WRAP cv::dnn::KeypointsModel::KeypointsModel | ( | const String & | model, |
const String & | config = "" |
||
) |
Create keypoints model from network represented in one of the supported formats. An order of model
and config
arguments does not matter.
[in] | model | Binary file contains trained weights. |
[in] | config | Text file contains network configuration. |
CV_WRAP cv::dnn::KeypointsModel::KeypointsModel | ( | const Net & | network | ) |
Create model from deep learning network.
[in] | network | Net object. |
CV_WRAP std::vector< Point2f > cv::dnn::KeypointsModel::estimate | ( | InputArray | frame, |
float | thresh = 0.5 |
||
) |
Given the input
frame, create input blob, run net
[in] | frame | The input image. |
thresh | minimum confidence threshold to select a keypoint |