|
OpenCV453
|
- normalization layer.
[詳解]
#include <all_layers.hpp>
cv::dnn::Layerを継承しています。
静的公開メンバ関数 | |
| static Ptr< NormalizeBBoxLayer > | create (const LayerParams ¶ms) |
基底クラス cv::Algorithm に属する継承静的公開メンバ関数 | |
| template<typename _Tp > | |
| static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node [詳解] | |
| template<typename _Tp > | |
| static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file [詳解] | |
| template<typename _Tp > | |
| static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String [詳解] | |
公開変数類 | |
| float | pnorm |
| float | epsilon |
| CV_DEPRECATED_EXTERNAL bool | acrossSpatial |
基底クラス cv::dnn::Layer に属する継承公開変数類 | |
| CV_PROP_RW std::vector< Mat > | blobs |
| List of learned parameters must be stored here to allow read them by using Net::getParam(). | |
| CV_PROP String | name |
| Name of the layer instance, can be used for logging or other internal purposes. | |
| CV_PROP String | type |
| Type name which was used for creating layer by layer factory. | |
| CV_PROP int | preferableTarget |
| prefer target for layer forwarding | |
その他の継承メンバ | |
基底クラス cv::dnn::Layer に属する継承公開メンバ関数 | |
| virtual CV_DEPRECATED_EXTERNAL void | finalize (const std::vector< Mat * > &input, std::vector< Mat > &output) |
| Computes and sets internal parameters according to inputs, outputs and blobs. [詳解] | |
| virtual CV_WRAP void | finalize (InputArrayOfArrays inputs, OutputArrayOfArrays outputs) |
| Computes and sets internal parameters according to inputs, outputs and blobs. [詳解] | |
| virtual CV_DEPRECATED_EXTERNAL void | forward (std::vector< Mat * > &input, std::vector< Mat > &output, std::vector< Mat > &internals) |
Given the input blobs, computes the output blobs. [詳解] | |
| virtual void | forward (InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) |
Given the input blobs, computes the output blobs. [詳解] | |
| void | forward_fallback (InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) |
Given the input blobs, computes the output blobs. [詳解] | |
| CV_DEPRECATED_EXTERNAL void | finalize (const std::vector< Mat > &inputs, CV_OUT std::vector< Mat > &outputs) |
| これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 [詳解] | |
| CV_DEPRECATED std::vector< Mat > | finalize (const std::vector< Mat > &inputs) |
| これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 [詳解] | |
| CV_DEPRECATED CV_WRAP void | run (const std::vector< Mat > &inputs, CV_OUT std::vector< Mat > &outputs, CV_IN_OUT std::vector< Mat > &internals) |
| Allocates layer and computes output. [詳解] | |
| virtual int | inputNameToIndex (String inputName) |
| Returns index of input blob into the input array. [詳解] | |
| virtual CV_WRAP int | outputNameToIndex (const String &outputName) |
| Returns index of output blob in output array. [詳解] | |
| virtual bool | supportBackend (int backendId) |
| Ask layer if it support specific backend for doing computations. [詳解] | |
| virtual Ptr< BackendNode > | initHalide (const std::vector< Ptr< BackendWrapper > > &inputs) |
| Returns Halide backend node. [詳解] | |
| virtual Ptr< BackendNode > | initInfEngine (const std::vector< Ptr< BackendWrapper > > &inputs) |
| virtual Ptr< BackendNode > | initNgraph (const std::vector< Ptr< BackendWrapper > > &inputs, const std::vector< Ptr< BackendNode > > &nodes) |
| virtual Ptr< BackendNode > | initVkCom (const std::vector< Ptr< BackendWrapper > > &inputs) |
| virtual Ptr< BackendNode > | initCUDA (void *context, const std::vector< Ptr< BackendWrapper > > &inputs, const std::vector< Ptr< BackendWrapper > > &outputs) |
| Returns a CUDA backend node [詳解] | |
| virtual void | applyHalideScheduler (Ptr< BackendNode > &node, const std::vector< Mat * > &inputs, const std::vector< Mat > &outputs, int targetId) const |
| Automatic Halide scheduling based on layer hyper-parameters. [詳解] | |
| virtual Ptr< BackendNode > | tryAttach (const Ptr< BackendNode > &node) |
| Implement layers fusing. [詳解] | |
| virtual bool | setActivation (const Ptr< ActivationLayer > &layer) |
| Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. [詳解] | |
| virtual bool | tryFuse (Ptr< Layer > &top) |
| Try to fuse current layer with a next one [詳解] | |
| virtual void | getScaleShift (Mat &scale, Mat &shift) const |
| Returns parameters of layers with channel-wise multiplication and addition. [詳解] | |
| virtual void | unsetAttached () |
| "Deattaches" all the layers, attached to particular layer. | |
| virtual bool | getMemoryShapes (const std::vector< MatShape > &inputs, const int requiredOutputs, std::vector< MatShape > &outputs, std::vector< MatShape > &internals) const |
| virtual int64 | getFLOPS (const std::vector< MatShape > &inputs, const std::vector< MatShape > &outputs) const |
| virtual bool | updateMemoryShapes (const std::vector< MatShape > &inputs) |
| Layer (const LayerParams ¶ms) | |
| Initializes only name, type and blobs fields. | |
| void | setParamsFrom (const LayerParams ¶ms) |
| Initializes only name, type and blobs fields. | |
基底クラス cv::Algorithm に属する継承公開メンバ関数 | |
| virtual CV_WRAP void | clear () |
| Clears the algorithm state [詳解] | |
| virtual void | write (FileStorage &fs) const |
| Stores algorithm parameters in a file storage [詳解] | |
| CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 | |
| virtual CV_WRAP void | read (const FileNode &fn) |
| Reads algorithm parameters from a file storage [詳解] | |
| virtual CV_WRAP bool | empty () const |
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解] | |
| virtual CV_WRAP void | save (const String &filename) const |
| virtual CV_WRAP String | getDefaultName () const |
基底クラス cv::Algorithm に属する継承限定公開メンバ関数 | |
| void | writeFormat (FileStorage &fs) const |
- normalization layer.
| p | Normalization factor. The most common p = 1 for - normalization or p = 2 for - normalization or a custom one. |
| eps | Parameter to prevent a division by zero. |
| across_spatial | If true, normalize an input across all non-batch dimensions. Otherwise normalize an every channel separately. |
Across spatial:
Channel wise normalization:
Where x, y - spatial coordinates, c - channel.
An every sample in the batch is normalized separately. Optionally, output is scaled by the trained parameters.