OpenCV453
|
- normalization layer.
[詳解]
#include <all_layers.hpp>
cv::dnn::Layerを継承しています。
静的公開メンバ関数 | |
static Ptr< NormalizeBBoxLayer > | create (const LayerParams ¶ms) |
![]() | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file [詳解] | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String [詳解] | |
公開変数類 | |
float | pnorm |
float | epsilon |
CV_DEPRECATED_EXTERNAL bool | acrossSpatial |
![]() | |
CV_PROP_RW std::vector< Mat > | blobs |
List of learned parameters must be stored here to allow read them by using Net::getParam(). | |
CV_PROP String | name |
Name of the layer instance, can be used for logging or other internal purposes. | |
CV_PROP String | type |
Type name which was used for creating layer by layer factory. | |
CV_PROP int | preferableTarget |
prefer target for layer forwarding | |
その他の継承メンバ | |
![]() | |
virtual CV_DEPRECATED_EXTERNAL void | finalize (const std::vector< Mat * > &input, std::vector< Mat > &output) |
Computes and sets internal parameters according to inputs, outputs and blobs. [詳解] | |
virtual CV_WRAP void | finalize (InputArrayOfArrays inputs, OutputArrayOfArrays outputs) |
Computes and sets internal parameters according to inputs, outputs and blobs. [詳解] | |
virtual CV_DEPRECATED_EXTERNAL void | forward (std::vector< Mat * > &input, std::vector< Mat > &output, std::vector< Mat > &internals) |
Given the input blobs, computes the output blobs . [詳解] | |
virtual void | forward (InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) |
Given the input blobs, computes the output blobs . [詳解] | |
void | forward_fallback (InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) |
Given the input blobs, computes the output blobs . [詳解] | |
CV_DEPRECATED_EXTERNAL void | finalize (const std::vector< Mat > &inputs, CV_OUT std::vector< Mat > &outputs) |
これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 [詳解] | |
CV_DEPRECATED std::vector< Mat > | finalize (const std::vector< Mat > &inputs) |
これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 [詳解] | |
CV_DEPRECATED CV_WRAP void | run (const std::vector< Mat > &inputs, CV_OUT std::vector< Mat > &outputs, CV_IN_OUT std::vector< Mat > &internals) |
Allocates layer and computes output. [詳解] | |
virtual int | inputNameToIndex (String inputName) |
Returns index of input blob into the input array. [詳解] | |
virtual CV_WRAP int | outputNameToIndex (const String &outputName) |
Returns index of output blob in output array. [詳解] | |
virtual bool | supportBackend (int backendId) |
Ask layer if it support specific backend for doing computations. [詳解] | |
virtual Ptr< BackendNode > | initHalide (const std::vector< Ptr< BackendWrapper > > &inputs) |
Returns Halide backend node. [詳解] | |
virtual Ptr< BackendNode > | initInfEngine (const std::vector< Ptr< BackendWrapper > > &inputs) |
virtual Ptr< BackendNode > | initNgraph (const std::vector< Ptr< BackendWrapper > > &inputs, const std::vector< Ptr< BackendNode > > &nodes) |
virtual Ptr< BackendNode > | initVkCom (const std::vector< Ptr< BackendWrapper > > &inputs) |
virtual Ptr< BackendNode > | initCUDA (void *context, const std::vector< Ptr< BackendWrapper > > &inputs, const std::vector< Ptr< BackendWrapper > > &outputs) |
Returns a CUDA backend node [詳解] | |
virtual void | applyHalideScheduler (Ptr< BackendNode > &node, const std::vector< Mat * > &inputs, const std::vector< Mat > &outputs, int targetId) const |
Automatic Halide scheduling based on layer hyper-parameters. [詳解] | |
virtual Ptr< BackendNode > | tryAttach (const Ptr< BackendNode > &node) |
Implement layers fusing. [詳解] | |
virtual bool | setActivation (const Ptr< ActivationLayer > &layer) |
Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. [詳解] | |
virtual bool | tryFuse (Ptr< Layer > &top) |
Try to fuse current layer with a next one [詳解] | |
virtual void | getScaleShift (Mat &scale, Mat &shift) const |
Returns parameters of layers with channel-wise multiplication and addition. [詳解] | |
virtual void | unsetAttached () |
"Deattaches" all the layers, attached to particular layer. | |
virtual bool | getMemoryShapes (const std::vector< MatShape > &inputs, const int requiredOutputs, std::vector< MatShape > &outputs, std::vector< MatShape > &internals) const |
virtual int64 | getFLOPS (const std::vector< MatShape > &inputs, const std::vector< MatShape > &outputs) const |
virtual bool | updateMemoryShapes (const std::vector< MatShape > &inputs) |
Layer (const LayerParams ¶ms) | |
Initializes only name, type and blobs fields. | |
void | setParamsFrom (const LayerParams ¶ms) |
Initializes only name, type and blobs fields. | |
![]() | |
virtual CV_WRAP void | clear () |
Clears the algorithm state [詳解] | |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage [詳解] | |
CV_WRAP void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
simplified API for language bindings これはオーバーロードされたメンバ関数です。利便性のために用意されています。元の関数との違いは引き数のみです。 | |
virtual CV_WRAP void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage [詳解] | |
virtual CV_WRAP bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read [詳解] | |
virtual CV_WRAP void | save (const String &filename) const |
virtual CV_WRAP String | getDefaultName () const |
![]() | |
void | writeFormat (FileStorage &fs) const |
- normalization layer.
p | Normalization factor. The most common p = 1 for ![]() p = 2 for ![]() |
eps | Parameter ![]() |
across_spatial | If true, normalize an input across all non-batch dimensions. Otherwise normalize an every channel separately. |
Across spatial:
Channel wise normalization:
Where x, y
- spatial coordinates, c
- channel.
An every sample in the batch is normalized separately. Optionally, output is scaled by the trained parameters.