OpenCV 4.5.3(日本語機械翻訳)
dualquaternion.inl.hpp
1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html.
4 //
5 //
6 // License Agreement
7 // For Open Source Computer Vision Library
8 //
9 // Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved.
10 // Third party copyrights are property of their respective owners.
11 //
12 // Licensed under the Apache License, Version 2.0 (the "License");
13 // you may not use this file except in compliance with the License.
14 // You may obtain a copy of the License at
15 //
16 // http://www.apache.org/licenses/LICENSE-2.0
17 //
18 // Unless required by applicable law or agreed to in writing, software
19 // distributed under the License is distributed on an "AS IS" BASIS,
20 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 // See the License for the specific language governing permissions and
22 // limitations under the License.
23 //
24 // Author: Liangqian Kong <kongliangqian@huawei.com>
25 // Longbu Wang <wanglongbu@huawei.com>
26
27 #ifndef OPENCV_CORE_DUALQUATERNION_INL_HPP
28 #define OPENCV_CORE_DUALQUATERNION_INL_HPP
29
30 #ifndef OPENCV_CORE_DUALQUATERNION_HPP
31 #error This is not a standalone header. Include dualquaternion.hpp instead.
32 #endif
33
35 //Implementation
36 namespace cv {
37
38 template <typename T>
39DualQuat<T>::DualQuat():w(0), x(0), y(0), z(0), w_(0), x_(0), y_(0), z_(0){};
40
41 template <typename T>
42DualQuat<T>::DualQuat(const T vw, const T vx, const T vy, const T vz, const T _w, const T _x, const T _y, const T _z):
43 w(vw), x(vx), y(vy), z(vz), w_(_w), x_(_x), y_(_y), z_(_z){};
44
45 template <typename T>
46DualQuat<T>::DualQuat(const Vec<T, 8> &q):w(q[0]), x(q[1]), y(q[2]), z(q[3]),
47 w_(q[4]), x_(q[5]), y_(q[6]), z_(q[7]){};
48
49 template <typename T>
50 DualQuat<T> DualQuat<T>::createFromQuat(const Quat<T> &realPart, const Quat<T> &dualPart)
51{
52 T w = realPart.w;
53 T x = realPart.x;
54 T y = realPart.y;
55 T z = realPart.z;
56 T w_ = dualPart.w;
57 T x_ = dualPart.x;
58 T y_ = dualPart.y;
59 T z_ = dualPart.z;
60 return DualQuat<T>(w, x, y, z, w_, x_, y_, z_);
61}
62
63 template <typename T>
64 DualQuat<T> DualQuat<T>::createFromAngleAxisTrans(const T angle, const Vec<T, 3> &axis, const Vec<T, 3> &trans)
65{
67 Quat<T> t{0, trans[0], trans[1], trans[2]};
68 return createFromQuat(r, t * r / 2);
69}
70
71 template <typename T>
73{
74 CV_CheckTypeEQ(_R.type(), cv::traits::Type<T>::value, "");
75 if (_R.size() != Size(4, 4))
76 {
77 CV_Error(Error::StsBadArg, "The input matrix must have 4 columns and 4 rows");
78 }
79 Mat R = _R.getMat();
80 Quat<T> r = Quat<T>::createFromRotMat(R.colRange(0, 3).rowRange(0, 3));
81 Quat<T> trans(0, R.at<T>(0, 3), R.at<T>(1, 3), R.at<T>(2, 3));
82 return createFromQuat(r, trans * r / 2);
83}
84
85 template <typename T>
87{
88 return createFromMat(R.matrix);
89}
90
91 template <typename T>
92 DualQuat<T> DualQuat<T>::createFromPitch(const T angle, const T d, const Vec<T, 3> &axis, const Vec<T, 3> &moment)
93{
94 T half_angle = angle / 2, half_d = d / 2;
95 Quat<T> qaxis = Quat<T>(0, axis[0], axis[1], axis[2]).normalize();
96 Quat<T> qmoment = Quat<T>(0, moment[0], moment[1], moment[2]);
97 qmoment -= qaxis * axis.dot(moment);
98 Quat<T> dual = -half_d * std::sin(half_angle) + std::sin(half_angle) * qmoment +
99 half_d * std::cos(half_angle) * qaxis;
100 return createFromQuat(Quat<T>::createFromAngleAxis(angle, axis), dual);
101}
102
103 template <typename T>
104 inline bool DualQuat<T>::operator==(const DualQuat<T> &q) const
105 {
106 return (abs(w - q.w) < CV_DUAL_QUAT_EPS && abs(x - q.x) < CV_DUAL_QUAT_EPS &&
107 abs(y - q.y) < CV_DUAL_QUAT_EPS && abs(z - q.z) < CV_DUAL_QUAT_EPS &&
108 abs(w_ - q.w_) < CV_DUAL_QUAT_EPS && abs(x_ - q.x_) < CV_DUAL_QUAT_EPS &&
109 abs(y_ - q.y_) < CV_DUAL_QUAT_EPS && abs(z_ - q.z_) < CV_DUAL_QUAT_EPS);
110}
111
112 template <typename T>
114 {
115 return Quat<T>(w, x, y, z);
116}
117
118 template <typename T>
120 {
121 return Quat<T>(w_, x_, y_, z_);
122}
123
124 template <typename T>
126{
127 return dq.conjugate();
128}
129
130 template <typename T>
132 {
133 return DualQuat<T>(w, -x, -y, -z, w_, -x_, -y_, -z_);
134}
135
136 template <typename T>
138 {
139 Quat<T> real = getRealPart();
140 T realNorm = real.norm();
141 Quat<T> dual = getDualPart();
142 if (realNorm < CV_DUAL_QUAT_EPS){
143 return DualQuat<T>(0, 0, 0, 0, 0, 0, 0, 0);
144 }
145 return DualQuat<T>(realNorm, 0, 0, 0, real.dot(dual) / realNorm, 0, 0, 0);
146}
147
148 template <typename T>
150 {
151 if (assumeUnit)
152 {
153 return getRealPart();
154 }
155 return getRealPart().normalize();
156}
157
158 template <typename T>
160 {
161 Quat<T> trans = 2.0 * (getDualPart() * getRealPart().inv(assumeUnit));
162 return Vec<T, 3>{trans[1], trans[2], trans[3]};
163}
164
165 template <typename T>
167 {
168 Quat<T> p = getRealPart();
169 Quat<T> q = getDualPart();
170 T p_norm = p.norm();
171 if (p_norm < CV_DUAL_QUAT_EPS)
172 {
173 CV_Error(Error::StsBadArg, "Cannot normalize this dual quaternion: the norm is too small.");
174 }
175 Quat<T> p_nr = p / p_norm;
176 Quat<T> q_nr = q / p_norm;
177 return createFromQuat(p_nr, q_nr - p_nr * p_nr.dot(q_nr));
178}
179
180 template <typename T>
181 inline T DualQuat<T>::dot(DualQuat<T> q) const
182 {
183 return q.w * w + q.x * x + q.y * y + q.z * z + q.w_ * w_ + q.x_ * x_ + q.y_ * y_ + q.z_ * z_;
184}
185
186 template <typename T>
188{
189 return dq.inv(assumeUnit);
190}
191
192 template <typename T>
194 {
195 Quat<T> real = getRealPart();
196 Quat<T> dual = getDualPart();
197 return createFromQuat(real.inv(assumeUnit), -real.inv(assumeUnit) * dual * real.inv(assumeUnit));
198}
199
200 template <typename T>
201 inline DualQuat<T> DualQuat<T>::operator-(const DualQuat<T> &q) const
202 {
203 return DualQuat<T>(w - q.w, x - q.x, y - q.y, z - q.z, w_ - q.w_, x_ - q.x_, y_ - q.y_, z_ - q.z_);
204}
205
206 template <typename T>
208 {
209 return DualQuat<T>(-w, -x, -y, -z, -w_, -x_, -y_, -z_);
210}
211
212 template <typename T>
214 {
215 return DualQuat<T>(w + q.w, x + q.x, y + q.y, z + q.z, w_ + q.w_, x_ + q.x_, y_ + q.y_, z_ + q.z_);
216}
217
218 template <typename T>
220{
221 *this = *this + q;
222 return *this;
223}
224
225 template <typename T>
227 {
228 Quat<T> A = getRealPart();
229 Quat<T> B = getDualPart();
230 Quat<T> C = q.getRealPart();
231 Quat<T> D = q.getDualPart();
232 return DualQuat<T>::createFromQuat(A * C, A * D + B * C);
233}
234
235 template <typename T>
237{
238 *this = *this * q;
239 return *this;
240}
241
242 template <typename T>
243 inline DualQuat<T> operator+(const T a, const DualQuat<T> &q)
244{
245 return DualQuat<T>(a + q.w, q.x, q.y, q.z, q.w_, q.x_, q.y_, q.z_);
246}
247
248 template <typename T>
249 inline DualQuat<T> operator+(const DualQuat<T> &q, const T a)
250{
251 return DualQuat<T>(a + q.w, q.x, q.y, q.z, q.w_, q.x_, q.y_, q.z_);
252}
253
254 template <typename T>
255 inline DualQuat<T> operator-(const DualQuat<T> &q, const T a)
256{
257 return DualQuat<T>(q.w - a, q.x, q.y, q.z, q.w_, q.x_, q.y_, q.z_);
258}
259
260 template <typename T>
262{
263 *this = *this - q;
264 return *this;
265}
266
267 template <typename T>
268 inline DualQuat<T> operator-(const T a, const DualQuat<T> &q)
269{
270 return DualQuat<T>(a - q.w, -q.x, -q.y, -q.z, -q.w_, -q.x_, -q.y_, -q.z_);
271}
272
273 template <typename T>
274 inline DualQuat<T> operator*(const T a, const DualQuat<T> &q)
275{
276 return DualQuat<T>(q.w * a, q.x * a, q.y * a, q.z * a, q.w_ * a, q.x_ * a, q.y_ * a, q.z_ * a);
277}
278
279 template <typename T>
280 inline DualQuat<T> operator*(const DualQuat<T> &q, const T a)
281{
282 return DualQuat<T>(q.w * a, q.x * a, q.y * a, q.z * a, q.w_ * a, q.x_ * a, q.y_ * a, q.z_ * a);
283}
284
285 template <typename T>
286 inline DualQuat<T> DualQuat<T>::operator/(const T a) const
287 {
288 return DualQuat<T>(w / a, x / a, y / a, z / a, w_ / a, x_ / a, y_ / a, z_ / a);
289}
290
291 template <typename T>
292 inline DualQuat<T> DualQuat<T>::operator/(const DualQuat<T> &q) const
293 {
294 return *this * q.inv();
295}
296
297 template <typename T>
298 inline DualQuat<T>& DualQuat<T>::operator/=(const DualQuat<T> &q)
299{
300 *this = *this / q;
301 return *this;
302}
303
304 template <typename T>
305std::ostream & operator<<(std::ostream &os, const DualQuat<T> &q)
306{
307 os << "DualQuat " << Vec<T, 8>{q.w, q.x, q.y, q.z, q.w_, q.x_, q.y_, q.z_};
308 return os;
309}
310
311 template <typename T>
312 inline DualQuat<T> exp(const DualQuat<T> &dq)
313{
314 return dq.exp();
315}
316
317 namespace detail {
318
319 template <typename _Tp>
320 Matx<_Tp, 4, 4> jacob_exp(const Quat<_Tp> &q)
321{
322 _Tp nv = std::sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
323 _Tp sinc_nv = abs(nv) < cv::DualQuat<_Tp>::CV_DUAL_QUAT_EPS ? 1 - nv * nv / 6 : std::sin(nv) / nv;
324 _Tp csiii_nv = abs(nv) < cv::DualQuat<_Tp>::CV_DUAL_QUAT_EPS ? -(_Tp)1.0 / 3 : (std::cos(nv) - sinc_nv) / nv / nv;
325 Matx<_Tp, 4, 4> J_exp_quat {
326 std::cos(nv), -sinc_nv * q.x, -sinc_nv * q.y, -sinc_nv * q.z,
327 sinc_nv * q.x, csiii_nv * q.x * q.x + sinc_nv, csiii_nv * q.x * q.y, csiii_nv * q.x * q.z,
328 sinc_nv * q.y, csiii_nv * q.y * q.x, csiii_nv * q.y * q.y + sinc_nv, csiii_nv * q.y * q.z,
329 sinc_nv * q.z, csiii_nv * q.z * q.x, csiii_nv * q.z * q.y, csiii_nv * q.z * q.z + sinc_nv
330 };
331 return std::exp(q.w) * J_exp_quat;
332}
333
334} // namespace detail
335
336 template <typename T>
338 {
339 Quat<T> real = getRealPart();
340 return createFromQuat(real.exp(), Quat<T>(detail::jacob_exp(real) * getDualPart().toVec()));
341}
342
343 template <typename T>
345{
346 return dq.log(assumeUnit);
347}
348
349 template <typename T>
351 {
352 Quat<T> plog = getRealPart().log(assumeUnit);
353 Matx<T, 4, 4> jacob = detail::jacob_exp(plog);
354 return createFromQuat(plog, Quat<T>(jacob.inv() * getDualPart().toVec()));
355}
356
357 template <typename T>
358 inline DualQuat<T> power(const DualQuat<T> &dq, const T t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
359{
360 return dq.power(t, assumeUnit);
361}
362
363 template <typename T>
364 inline DualQuat<T> DualQuat<T>::power(const T t, QuatAssumeType assumeUnit) const
365 {
366 return (t * log(assumeUnit)).exp();
367}
368
369 template <typename T>
370 inline DualQuat<T> power(const DualQuat<T> &p, const DualQuat<T> &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
371{
372 return p.power(q, assumeUnit);
373}
374
375 template <typename T>
376 inline DualQuat<T> DualQuat<T>::power(const DualQuat<T> &q, QuatAssumeType assumeUnit) const
377 {
378 return (q * log(assumeUnit)).exp();
379}
380
381 template <typename T>
383 {
384 return Vec<T, 8>(w, x, y, z, w_, x_, y_, z_);
385}
386
387 template <typename T>
388 Affine3<T> DualQuat<T>::toAffine3(QuatAssumeType assumeUnit) const
389 {
390 return Affine3<T>(toMat(assumeUnit));
391}
392
393 template <typename T>
395 {
396 Matx<T, 4, 4> rot44 = getRotation(assumeUnit).toRotMat4x4();
397 Vec<T, 3> translation = getTranslation(assumeUnit);
398 rot44(0, 3) = translation[0];
399 rot44(1, 3) = translation[1];
400 rot44(2, 3) = translation[2];
401 return rot44;
402}
403
404 template <typename T>
405 DualQuat<T> DualQuat<T>::sclerp(const DualQuat<T> &q0, const DualQuat<T> &q1, const T t, bool directChange, QuatAssumeType assumeUnit)
406{
407 DualQuat<T> v0(q0), v1(q1);
408 if (!assumeUnit)
409 {
410 v0 = v0.normalize();
411 v1 = v1.normalize();
412 }
413 Quat<T> v0Real = v0.getRealPart();
414 Quat<T> v1Real = v1.getRealPart();
415 if (directChange && v1Real.dot(v0Real) < 0)
416 {
417 v0 = -v0;
418 }
419 DualQuat<T> v0inv1 = v0.inv() * v1;
420 return v0 * v0inv1.power(t, QUAT_ASSUME_UNIT);
421}
422
423 template <typename T>
424 DualQuat<T> DualQuat<T>::dqblend(const DualQuat<T> &q1, const DualQuat<T> &q2, const T t, QuatAssumeType assumeUnit)
425{
426 DualQuat<T> v1(q1), v2(q2);
427 if (!assumeUnit)
428 {
429 v1 = v1.normalize();
430 v2 = v2.normalize();
431 }
432 if (v1.getRotation(assumeUnit).dot(v2.getRotation(assumeUnit)) < 0)
433 {
434 return ((1 - t) * v1 - t * v2).normalize();
435 }
436 return ((1 - t) * v1 + t * v2).normalize();
437}
438
439 template <typename T>
440 DualQuat<T> DualQuat<T>::gdqblend(InputArray _dualquat, InputArray _weight, QuatAssumeType assumeUnit)
441{
442 CV_CheckTypeEQ(_weight.type(), cv::traits::Type<T>::value, "");
443 CV_CheckTypeEQ(_dualquat.type(), CV_MAKETYPE(CV_MAT_DEPTH(cv::traits::Type<T>::value), 8), "");
444 Size dq_s = _dualquat.size();
445 if (dq_s != _weight.size() || (dq_s.height != 1 && dq_s.width != 1))
446 {
447 CV_Error(Error::StsBadArg, "The size of weight must be the same as dualquat, both of them should be (1, n) or (n, 1)");
448 }
449 Mat dualquat = _dualquat.getMat(), weight = _weight.getMat();
450 const int cn = std::max(dq_s.width, dq_s.height);
451 if (!assumeUnit)
452 {
453 for (int i = 0; i < cn; ++i)
454 {
455 dualquat.at<Vec<T, 8>>(i) = DualQuat<T>{dualquat.at<Vec<T, 8>>(i)}.normalize().toVec();
456 }
457 }
458 Vec<T, 8> dq_blend = dualquat.at<Vec<T, 8>>(0) * weight.at<T>(0);
459 Quat<T> q0 = DualQuat<T> {dualquat.at<Vec<T, 8>>(0)}.getRotation(assumeUnit);
460 for (int i = 1; i < cn; ++i)
461 {
462 T k = q0.dot(DualQuat<T>{dualquat.at<Vec<T, 8>>(i)}.getRotation(assumeUnit)) < 0 ? -1: 1;
463 dq_blend = dq_blend + dualquat.at<Vec<T, 8>>(i) * k * weight.at<T>(i);
464 }
465 return DualQuat<T>{dq_blend}.normalize();
466}
467
468 template <typename T>
469 template <int cn>
470 DualQuat<T> DualQuat<T>::gdqblend(const Vec<DualQuat<T>, cn> &_dualquat, InputArray _weight, QuatAssumeType assumeUnit)
471{
472 Vec<DualQuat<T>, cn> dualquat(_dualquat);
473 if (cn == 0)
474 {
475 return DualQuat<T>(1, 0, 0, 0, 0, 0, 0, 0);
476 }
477 Mat dualquat_mat(cn, 1, CV_64FC(8));
478 for (int i = 0; i < cn ; ++i)
479 {
480 dualquat_mat.at<Vec<T, 8>>(i) = dualquat[i].toVec();
481 }
482 return gdqblend(dualquat_mat, _weight, assumeUnit);
483}
484
485} //namespace cv
486
487 #endif /*OPENCV_CORE_DUALQUATERNION_INL_HPP*/
Definition: dualquaternion.hpp:146
Quat< _Tp > getRealPart() const
return a quaternion which represent the real part of dual quaternion. The definition of real part is ...
Definition: dualquaternion.inl.hpp:113
friend DualQuat< T > power(const DualQuat< T > &dq, const T t, QuatAssumeType assumeUnit)
return the value of where p is a dual quaternion. This could be calculated as:
Definition: dualquaternion.inl.hpp:358
friend DualQuat< T > exp(const DualQuat< T > &dq)
return the value of exponential function value
Definition: dualquaternion.inl.hpp:312
friend DualQuat< T > log(const DualQuat< T > &dq, QuatAssumeType assumeUnit)
return the value of logarithm function value
Definition: dualquaternion.inl.hpp:344
Quat< _Tp > getDualPart() const
return a quaternion which represent the dual part of dual quaternion. The definition of dual part is ...
Definition: dualquaternion.inl.hpp:119
friend DualQuat< T > inv(const DualQuat< T > &dq, QuatAssumeType assumeUnit)
if is a dual quaternion, p is not zero, the inverse dual quaternion is
Definition: dualquaternion.inl.hpp:187
friend DualQuat< T > conjugate(const DualQuat< T > &dq)
return the conjugate of a dual quaternion.
Definition: dualquaternion.inl.hpp:125
Quat< _Tp > getRotation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const
return the rotation in quaternion form.
Definition: dualquaternion.inl.hpp:149
DualQuat< _Tp > normalize() const
return a normalized dual quaternion. A dual quaternion can be expressed as
Definition: dualquaternion.inl.hpp:166
CV_EXPORTS FileStorage & operator<<(FileStorage &fs, const String &str)
Writes string to a file storage.
CV_EXPORTS MatExpr abs(const Mat &m)
Calculates an absolute value of each matrix element.
n-dimensional dense array class
Definition: mat.hpp:802
_Tp & at(int i0=0)
Returns a reference to the specified array element.
Template class for small matrices whose type and size are known at compilation time
Definition: matx.hpp:100
Matx< _Tp, n, m > inv(int method=DECOMP_LU, bool *p_is_ok=NULL) const
invert the matrix
_Tp dot(const Matx< _Tp, m, n > &v) const
dot product computed with the default precision
Definition: quaternion.hpp:211
_Tp dot(Quat< _Tp > q) const
return the dot between quaternion and this quaternion.
friend Quat< T > log(const Quat< T > &q, QuatAssumeType assumeUnit)
return the value of logarithm function.
Quat< _Tp > normalize() const
return a normalized .
friend Quat< T > inv(const Quat< T > &q, QuatAssumeType assumeUnit)
return which is an inverse of which satisfies .
friend Quat< T > exp(const Quat< T > &q)
return the value of exponential value.
_Tp norm() const
return the norm of quaternion.
Template class for specifying the size of an image or rectangle.
Definition: core/types.hpp:316
_Tp height
the height
Definition: core/types.hpp:340
_Tp width
the width
Definition: core/types.hpp:339
Template class for short numerical vectors, a partial case of Matx
Definition: matx.hpp:342
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst)
Calculates per-element maximum of two arrays or an array and a scalar.
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst)
Calculates a square root of array elements.
CV_EXPORTS_W void exp(InputArray src, OutputArray dst)
Calculates the exponent of every array element.
CV_EXPORTS_W double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())
Calculates the absolute norm of an array.
CV_EXPORTS_W void log(InputArray src, OutputArray dst)
Calculates the natural logarithm of every array element.
CV_EXPORTS_W void normalize(InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray())
Normalizes the norm or value range of an array.
CV_INLINE v_reg< _Tp, n > operator*(const v_reg< _Tp, n > &a, const v_reg< _Tp, n > &b)
Multiply values
CV_INLINE v_reg< _Tp, n > operator+(const v_reg< _Tp, n > &a, const v_reg< _Tp, n > &b)
Add values
CV_INLINE v_reg< _Tp, n > operator/(const v_reg< _Tp, n > &a, const v_reg< _Tp, n > &b)
Divide values
CV_INLINE v_reg< _Tp, n > operator-(const v_reg< _Tp, n > &a, const v_reg< _Tp, n > &b)
Subtract values
softfloat abs(softfloat a)
Absolute value
Definition: softfloat.hpp:444
#define CV_Error(code, msg)
Call the error handler.
Definition: base.hpp:320
Quat< T > inv(const Quat< T > &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
Quat< T > cos(const Quat< T > &q)
QuatAssumeType
Unit quaternion flag
Definition: quaternion.hpp:39
Quat< T > sin(const Quat< T > &q)
@ QUAT_ASSUME_NOT_UNIT
Definition: quaternion.hpp:46
@ QUAT_ASSUME_UNIT
Definition: quaternion.hpp:52
cv
"black box" representation of the file storage associated with a file on disk.
Definition: aruco.hpp:75
DualQuat< T > conjugate(const DualQuat< T > &dq)
Definition: dualquaternion.inl.hpp:125
Definition: traits.hpp:386