4
#ifndef __OPENCV_FACE_ALIGNMENT_HPP__
5
#define __OPENCV_FACE_ALIGNMENT_HPP__
7
#include "opencv2/face/facemark_train.hpp"
51
virtual
bool
training(std::vector<Mat>& images, std::vector< std::vector<Point2f> >& landmarks,std::string configfile,
Size
scale,std::string modelFilename =
"face_landmarks.dat")=0;
This type is very similar to InputArray except that it is used for input/output and output function p...
Definition:
mat.hpp:295
Template class for specifying the size of an image or rectangle.
Definition:
core/types.hpp:316
Abstract base class for all facemark models
Definition:
facemark.hpp:48
Definition:
face_alignment.hpp:12
virtual bool training(std::vector< Mat > &images, std::vector< std::vector< Point2f > > &landmarks, std::string configfile, Size scale, std::string modelFilename="face_landmarks.dat")=0
This function is used to train the model using gradient boosting to get a cascade of regressors which...
virtual bool setFaceDetector(bool(*f)(InputArray, OutputArray, void *), void *userData)=0
set the custom face detector
virtual bool getFaces(InputArray image, OutputArray faces)=0
get faces using the custom detector
"black box" representation of the file storage associated with a file on disk.
Definition:
aruco.hpp:75
Definition:
cvstd_wrapper.hpp:74
Definition:
face_alignment.hpp:15
unsigned long num_test_splits
num_test_splits stores number of random test splits generated.
Definition:
face_alignment.hpp:35
unsigned long num_test_coordinates
num_test_coordinates stores number of test coordinates.
Definition:
face_alignment.hpp:31
float learning_rate
learning_rate stores the learning rate in gradient boosting, also referred as shrinkage.
Definition:
face_alignment.hpp:27
unsigned long tree_depth
tree_depth This stores the max height of the regression tree built.
Definition:
face_alignment.hpp:23
unsigned long oversampling_amount
oversampling_amount stores number of initialisations used to create training samples.
Definition:
face_alignment.hpp:29
String configfile
configfile stores the name of the file containing the values of training parameters
Definition:
face_alignment.hpp:37
float lambda
lambda stores a value to calculate probability of closeness of two coordinates.
Definition:
face_alignment.hpp:33
unsigned long num_trees_per_cascade_level
num_trees_per_cascade_level This stores number of trees fit per cascade level.
Definition:
face_alignment.hpp:25
unsigned long cascade_depth
cascade_depth This stores the deapth of cascade used for training.
Definition:
face_alignment.hpp:21