OpenCV 4.5.3(日本語機械翻訳)
|
クラス |
|
struct | cv::line_descriptor::KeyLine |
線を表現するクラス[【詳解】(英語]
|
|
class | cv::line_descriptor::BinaryDescriptor |
クラスは,線の検出とそのバイナリ記述子の計算の両方の機能を実装しています.[【詳解】(英語]
|
|
struct | cv::line_descriptor::LSDParam |
class | cv::line_descriptor::LSDDetector |
class | cv::line_descriptor::BinaryDescriptorMatcher |
は,ユーザやクラス内部から提供された(いずれにせよユーザが入力しなければならない)データセットに対して,以下のモデルで問い合わせを行うためのすべての機能を提供します.Descriptor Matchers
[【詳解】(英語]
|
|
struct | cv::line_descriptor::DrawLinesMatchesFlags |
関数 |
|
CV_EXPORTS_W void | cv::line_descriptor::drawLineMatches (const Mat &img1, const std::vector< KeyLine > &keylines1, const Mat &img2, const std::vector< KeyLine > &keylines2, const std::vector< DMatch > &matches1to2, CV_OUT Mat &outImg, const Scalar &matchColor=Scalar::all(-1), const Scalar &singleLineColor=Scalar::all(-1), const std::vector< char > &matchesMask=std::vector< char >(), int flags=DrawLinesMatchesFlags::DEFAULT) |
2つの画像からマッチしたキーラインを描画します。[【詳解】(英語]
|
|
CV_EXPORTS_W void | cv::line_descriptor::drawKeylines (const Mat &image, const std::vector< KeyLine > &keylines, CV_OUT Mat &outImage, const Scalar &color=Scalar::all(-1), int flags=DrawLinesMatchesFlags::DEFAULT) |
キーラインを描画します.[【詳解】(英語]
|
|
One of the most challenging activities in computer vision is the extraction of useful information from a given image. Such information, usually comes in the form of points that preserve some kind of property (for instance, they are scale-invariant) and are actually representative of input image.
The goal of this module is seeking a new kind of representative information inside an image and providing the functionalities for its extraction and representation. In particular, differently from previous methods for detection of relevant elements inside an image, lines are extracted in place of points; a new class is defined ad hoc to summarize a line's properties, for reuse and plotting purposes.
To obtatin a binary descriptor representing a certain line detected from a certain octave of an image, we first compute a non-binary descriptor as described in
[LBD]
. Such algorithm works on lines extracted using EDLine detector, as explained in
[EDL]
. Given a line, we consider a rectangular region centered at it and called
line support region (LSR). Such region is divided into a set of bands
, whose length equals the one of line.
If we indicate with
the direction of line, the orthogonal and clockwise direction to line
can be determined; these two directions, are used to construct a reference frame centered in the middle point of line. The gradients of pixels
inside LSR can be projected to the newly determined frame, obtaining their local equivalent
.
Later on, a Gaussian function is applied to all LSR's pixels along
direction; first, we assign a global weighting coefficient
to i*-th row in LSR, where
is the distance of
i-th row from the center row in LSR,
and
is the width of bands (the same for every band). Secondly, considering a band
and its neighbor bands
, we assign a local weighting
, where
is the distance of
k-th row from the center row in
and
. Using the global and local weights, we obtain, at the same time, the reduction of role played by gradients far from line and of boundary effect, respectively.
Each band
in LSR has an associated
band descriptor(BD)
which is computed considering previous and next band (top and bottom bands are ignored when computing descriptor for first and last band). Once each band has been assignen its BD, the LBD descriptor of line is simply given by
To compute a band descriptor
, each
k-th row in it is considered and the gradients in such row are accumulated:
with
.
By stacking previous results, we obtain the band description matrix (BDM)
with
the number of rows in band
:
Each
can be obtained using the standard deviation vector
and mean vector
of
. Thus, finally:
Once the LBD has been obtained, it must be converted into a binary form. For such purpose, we consider 32 possible pairs of BD inside it; each couple of BD is compared bit by bit and comparison generates an 8 bit string. Concatenating 32 comparison strings, we get the 256-bit final binary representation of a single LBD.
CV_EXPORTS_W void cv::line_descriptor::drawKeylines | ( | const Mat & | image, |
const std::vector< KeyLine > & | keylines, | ||
CV_OUT Mat & | outImage, | ||
const Scalar & |
color
=
Scalar::all(-1) ,
|
||
int |
flags
=
DrawLinesMatchesFlags::DEFAULT
|
||
) |
キーラインを描画します.
image | 入力画像 |
keylines | 描画されるキーライン |
outImage | 描画する出力画像 |
color | 描画される線の色(デフォルト値に設定されている場合,色はランダムに選択されます). |
flags | 描画フラグ |
CV_EXPORTS_W void cv::line_descriptor::drawLineMatches | ( | const Mat & | img1, |
const std::vector< KeyLine > & | keylines1, | ||
const Mat & | img2, | ||
const std::vector< KeyLine > & | keylines2, | ||
const std::vector< DMatch > & | matches1to2, | ||
CV_OUT Mat & | outImg, | ||
const Scalar & |
matchColor
=
Scalar::all(-1) ,
|
||
const Scalar & |
singleLineColor
=
Scalar::all(-1) ,
|
||
const std::vector< char > & |
matchesMask
=
std::vector< char >() ,
|
||
int |
flags
=
DrawLinesMatchesFlags::DEFAULT
|
||
) |
2つの画像からマッチしたキーラインを描画します。
img1 | 第1画像 |
keylines1 | 1枚目の画像から抽出されたキーライン |
img2 | 2枚目の画像 |
keylines2 | 2番目の画像から抽出されたキーライン |
matches1to2 | 一致した部分のベクトル |
outImg | 描画用の出力行列 |
matchColor | マッチの描画色(デフォルト値の場合,ランダムに選択される) |
singleLineColor | キーラインの描画色(デフォルト値ではランダムに選択されます) |
matchesMask | どのマッチを描かなければならないかを示すマスク |
flags | 描画フラグ(参照DrawLinesMatchesFlags |