OpenCV 4.5.3(日本語機械翻訳)
クラス | 関数
Binary descriptors for lines extracted from an image

クラス

struct cv::line_descriptor::KeyLine
線を表現するクラス[【詳解】(英語]
class cv::line_descriptor::BinaryDescriptor
クラスは,線の検出とそのバイナリ記述子の計算の両方の機能を実装しています.[【詳解】(英語]
struct cv::line_descriptor::LSDParam
class cv::line_descriptor::LSDDetector
class cv::line_descriptor::BinaryDescriptorMatcher
は,ユーザやクラス内部から提供された(いずれにせよユーザが入力しなければならない)データセットに対して,以下のモデルで問い合わせを行うためのすべての機能を提供します.Descriptor Matchers [【詳解】(英語]
struct cv::line_descriptor::DrawLinesMatchesFlags

関数

CV_EXPORTS_W void cv::line_descriptor::drawLineMatches (const Mat &img1, const std::vector< KeyLine > &keylines1, const Mat &img2, const std::vector< KeyLine > &keylines2, const std::vector< DMatch > &matches1to2, CV_OUT Mat &outImg, const Scalar &matchColor=Scalar::all(-1), const Scalar &singleLineColor=Scalar::all(-1), const std::vector< char > &matchesMask=std::vector< char >(), int flags=DrawLinesMatchesFlags::DEFAULT)
2つの画像からマッチしたキーラインを描画します。[【詳解】(英語]
CV_EXPORTS_W void cv::line_descriptor::drawKeylines (const Mat &image, const std::vector< KeyLine > &keylines, CV_OUT Mat &outImage, const Scalar &color=Scalar::all(-1), int flags=DrawLinesMatchesFlags::DEFAULT)
キーラインを描画します.[【詳解】(英語]

詳解

Introduction

One of the most challenging activities in computer vision is the extraction of useful information from a given image. Such information, usually comes in the form of points that preserve some kind of property (for instance, they are scale-invariant) and are actually representative of input image.

The goal of this module is seeking a new kind of representative information inside an image and providing the functionalities for its extraction and representation. In particular, differently from previous methods for detection of relevant elements inside an image, lines are extracted in place of points; a new class is defined ad hoc to summarize a line's properties, for reuse and plotting purposes.

Computation of binary descriptors

To obtatin a binary descriptor representing a certain line detected from a certain octave of an image, we first compute a non-binary descriptor as described in [LBD] . Such algorithm works on lines extracted using EDLine detector, as explained in [EDL] . Given a line, we consider a rectangular region centered at it and called line support region (LSR). Such region is divided into a set of bands $\{B_1, B_2, ..., B_m\}$, whose length equals the one of line.

If we indicate with $\bf{d}_L$ the direction of line, the orthogonal and clockwise direction to line $\bf{d}_{\perp}$ can be determined; these two directions, are used to construct a reference frame centered in the middle point of line. The gradients of pixels $\bf{g'}$ inside LSR can be projected to the newly determined frame, obtaining their local equivalent $\bf{g'} = (\bf{g}^T \cdot \bf{d}_{\perp}, \bf{g}^T \cdot \bf{d}_L)^T \triangleq (\bf{g'}_{d_{\perp}}, \bf{g'}_{d_L})^T$.

Later on, a Gaussian function is applied to all LSR's pixels along $\bf{d}_\perp$ direction; first, we assign a global weighting coefficient $f_g(i) = (1/\sqrt{2\pi}\sigma_g)e^{-d^2_i/2\sigma^2_g}$ to i*-th row in LSR, where $d_i$ is the distance of i-th row from the center row in LSR, $\sigma_g = 0.5(m \cdot w - 1)$ and $w$ is the width of bands (the same for every band). Secondly, considering a band $B_j$ and its neighbor bands $B_{j-1}, B_{j+1}$, we assign a local weighting $F_l(k) = (1/\sqrt{2\pi}\sigma_l)e^{-d'^2_k/2\sigma_l^2}$, where $d'_k$ is the distance of k-th row from the center row in $B_j$ and $\sigma_l = w$. Using the global and local weights, we obtain, at the same time, the reduction of role played by gradients far from line and of boundary effect, respectively.

Each band $B_j$ in LSR has an associated band descriptor(BD) which is computed considering previous and next band (top and bottom bands are ignored when computing descriptor for first and last band). Once each band has been assignen its BD, the LBD descriptor of line is simply given by

\[LBD = (BD_1^T, BD_2^T, ... , BD^T_m)^T.\]

To compute a band descriptor $B_j$, each k-th row in it is considered and the gradients in such row are accumulated:

\[\begin{matrix} \bf{V1}^k_j = \lambda \sum\limits_{\bf{g}'_{d_\perp}>0}\bf{g}'_{d_\perp}, & \bf{V2}^k_j = \lambda \sum\limits_{\bf{g}'_{d_\perp}<0} -\bf{g}'_{d_\perp}, \\ \bf{V3}^k_j = \lambda \sum\limits_{\bf{g}'_{d_L}>0}\bf{g}'_{d_L}, & \bf{V4}^k_j = \lambda \sum\limits_{\bf{g}'_{d_L}<0} -\bf{g}'_{d_L}\end{matrix}.\]

with $\lambda = f_g(k)f_l(k)$.

By stacking previous results, we obtain the band description matrix (BDM)

\[BDM_j = \left(\begin{matrix} \bf{V1}_j^1 & \bf{V1}_j^2 & \ldots & \bf{V1}_j^n \\ \bf{V2}_j^1 & \bf{V2}_j^2 & \ldots & \bf{V2}_j^n \\ \bf{V3}_j^1 & \bf{V3}_j^2 & \ldots & \bf{V3}_j^n \\ \bf{V4}_j^1 & \bf{V4}_j^2 & \ldots & \bf{V4}_j^n \end{matrix} \right) \in \mathbb{R}^{4\times n},\]

with $n$ the number of rows in band $B_j$:

\[n = \begin{cases} 2w, & j = 1||m; \\ 3w, & \mbox{else}. \end{cases}\]

Each $BD_j$ can be obtained using the standard deviation vector $S_j$ and mean vector $M_j$ of $BDM_J$. Thus, finally:

\[LBD = (M_1^T, S_1^T, M_2^T, S_2^T, \ldots, M_m^T, S_m^T)^T \in \mathbb{R}^{8m}\]

Once the LBD has been obtained, it must be converted into a binary form. For such purpose, we consider 32 possible pairs of BD inside it; each couple of BD is compared bit by bit and comparison generates an 8 bit string. Concatenating 32 comparison strings, we get the 256-bit final binary representation of a single LBD.

関数詳解

drawKeylines()

CV_EXPORTS_W void cv::line_descriptor::drawKeylines ( const Mat & image,
const std::vector< KeyLine > & keylines,
CV_OUT Mat & outImage,
const Scalar & color = Scalar::all(-1),
int flags = DrawLinesMatchesFlags::DEFAULT
)

キーラインを描画します.

引数
image 入力画像
keylines 描画されるキーライン
outImage 描画する出力画像
color 描画される線の色(デフォルト値に設定されている場合,色はランダムに選択されます).
flags 描画フラグ

drawLineMatches()

CV_EXPORTS_W void cv::line_descriptor::drawLineMatches ( const Mat & img1,
const std::vector< KeyLine > & keylines1,
const Mat & img2,
const std::vector< KeyLine > & keylines2,
const std::vector< DMatch > & matches1to2,
CV_OUT Mat & outImg,
const Scalar & matchColor = Scalar::all(-1),
const Scalar & singleLineColor = Scalar::all(-1),
const std::vector< char > & matchesMask = std::vector< char >(),
int flags = DrawLinesMatchesFlags::DEFAULT
)

2つの画像からマッチしたキーラインを描画します。

引数
img1 第1画像
keylines1 1枚目の画像から抽出されたキーライン
img2 2枚目の画像
keylines2 2番目の画像から抽出されたキーライン
matches1to2 一致した部分のベクトル
outImg 描画用の出力行列
matchColor マッチの描画色(デフォルト値の場合,ランダムに選択される)
singleLineColor キーラインの描画色(デフォルト値ではランダムに選択されます)
matchesMask どのマッチを描かなければならないかを示すマスク
flags 描画フラグ(参照DrawLinesMatchesFlags
覚え書き
もし両方ともマッチカラーおよびsingleLineColorがデフォルト値に設定されている場合,関数はマッチした線とそれらを結ぶ線を同じ色で描画します.