OpenCV 4.5.3(日本語機械翻訳)
tracking.detail.hpp
1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html.
4
5 #ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
6 #define OPENCV_VIDEO_DETAIL_TRACKING_HPP
7
8 /*
9 * Partially based on:
10 * ====================================================================================================================
11 * - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
12 * - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
13 *
14 * This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
15 *
16 */
17
18 #include "opencv2/core.hpp"
19
20 namespace cv {
21 namespace detail {
22 inline namespace tracking {
23
28 /************************************ TrackerFeature Base Classes ************************************/
29
32 class CV_EXPORTS TrackerFeature
33{
34 public:
35 virtual ~TrackerFeature();
36
41 void compute(const std::vector<Mat>& images, Mat& response);
42
43 protected:
44 virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
45};
46
59 class CV_EXPORTS TrackerFeatureSet
60{
61 public:
63
65
69 void extraction(const std::vector<Mat>& images);
70
75
78 const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
79
83 const std::vector<Mat>& getResponses() const;
84
85 private:
86 void clearResponses();
87 bool blockAddTrackerFeature;
88
89 std::vector<Ptr<TrackerFeature>> features; // list of features
90 std::vector<Mat> responses; // list of response after compute
91};
92
93 /************************************ TrackerSampler Base Classes ************************************/
94
98 class CV_EXPORTS TrackerSamplerAlgorithm
99{
100 public:
101 virtual ~TrackerSamplerAlgorithm();
102
112 virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
113};
114
128 class CV_EXPORTS TrackerSampler
129{
130 public:
132
134
139 void sampling(const Mat& image, Rect boundingBox);
140
143 const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
144
147 const std::vector<Mat>& getSamples() const;
148
153
154 private:
155 std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
156 std::vector<Mat> samples;
157 bool blockAddTrackerSampler;
158
159 void clearSamples();
160};
161
162 /************************************ TrackerModel Base Classes ************************************/
163
171 class CV_EXPORTS TrackerTargetState
172{
173 public:
174 virtual ~TrackerTargetState() {};
179
183 void setTargetPosition(const Point2f& position);
187 int getTargetWidth() const;
188
192 void setTargetWidth(int width);
196 int getTargetHeight() const;
197
201 void setTargetHeight(int height);
202
203 protected:
204 Point2f targetPosition;
205 int targetWidth;
206 int targetHeight;
207};
208
214 typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
215
222 typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
223
230 class CV_EXPORTS TrackerStateEstimator
231{
232 public:
233 virtual ~TrackerStateEstimator();
234
238 Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
239
243 void update(std::vector<ConfidenceMap>& confidenceMaps);
244
256 static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
257
260 String getClassName() const;
261
262 protected:
263 virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
264 virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
265 String className;
266};
267
276 class CV_EXPORTS TrackerModel
277{
278 public:
279 TrackerModel();
280
281 virtual ~TrackerModel();
282
288
294 void modelEstimation(const std::vector<Mat>& responses);
295
301
305
309 void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
310
314
317 const std::vector<ConfidenceMap>& getConfidenceMaps() const;
318
322
326
327 private:
328 void clearCurrentConfidenceMap();
329
330 protected:
331 std::vector<ConfidenceMap> confidenceMaps;
332 Ptr<TrackerStateEstimator> stateEstimator;
333 ConfidenceMap currentConfidenceMap;
334 Trajectory trajectory;
335 int maxCMLength;
336
337 virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
338 virtual void modelUpdateImpl() = 0;
339};
340
341 /************************************ Specific TrackerStateEstimator Classes ************************************/
342
343 // None
344
345 /************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
346
350{
351 public:
353
354 enum MODE
355 {
356 MODE_INIT_POS = 1,
357 MODE_INIT_NEG = 2,
358 MODE_TRACK_POS = 3,
359 MODE_TRACK_NEG = 4,
360 MODE_DETECT = 5
361 };
362
363 struct CV_EXPORTS Params
364 {
365 Params();
366 float initInRad;
372 };
373
378
390 void setMode(int samplingMode);
391
392 bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
393
394 private:
395 Params params;
396 int mode;
397 RNG rng;
398
399 std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
400};
401
403
404}}} // namespace cv::detail::tracking
405
406 #endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP
n-dimensional dense array class
Definition: mat.hpp:802
Random Number Generator
Definition: core.hpp:2783
Template class for 2D rectangles
Definition: core/types.hpp:421
Abstract base class for TrackerFeature that represents the feature.
Definition: tracking.detail.hpp:33
void compute(const std::vector< Mat > &images, Mat &response)
Compute the features in the images collection
Class that manages the extraction and selection of features
Definition: tracking.detail.hpp:60
void extraction(const std::vector< Mat > &images)
Extract features from the images collection
bool addTrackerFeature(const Ptr< TrackerFeature > &feature)
Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
const std::vector< Mat > & getResponses() const
Get the responses
const std::vector< Ptr< TrackerFeature > > & getTrackerFeatures() const
Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
Abstract class that represents the model of the target.
Definition: tracking.detail.hpp:277
bool setTrackerStateEstimator(Ptr< TrackerStateEstimator > trackerStateEstimator)
Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
Ptr< TrackerStateEstimator > getTrackerStateEstimator() const
Get the TrackerStateEstimator
void modelUpdate()
Update the model
void modelEstimation(const std::vector< Mat > &responses)
Estimate the most likely target location
Ptr< TrackerTargetState > getLastTargetState() const
Get the last TrackerTargetState from Trajectory
void setLastTargetState(const Ptr< TrackerTargetState > &lastTargetState)
Set the current TrackerTargetState in the Trajectory
bool runStateEstimator()
Run the TrackerStateEstimator, return true if is possible to estimate a new state,...
const ConfidenceMap & getLastConfidenceMap() const
Get the last ConfidenceMap for the current frame
const std::vector< ConfidenceMap > & getConfidenceMaps() const
Get the list of the ConfidenceMap
Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific sample...
Definition: tracking.detail.hpp:99
virtual bool sampling(const Mat &image, const Rect &boundingBox, std::vector< Mat > &sample)=0
Computes the regions starting from a position in an image.
TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
Definition: tracking.detail.hpp:350
void setMode(int samplingMode)
Set the sampling mode of TrackerSamplerCSC
bool sampling(const Mat &image, const Rect &boundingBox, std::vector< Mat > &sample) CV_OVERRIDE
Computes the regions starting from a position in an image.
TrackerSamplerCSC(const TrackerSamplerCSC::Params &parameters=TrackerSamplerCSC::Params())
Constructor
MODE
Definition: tracking.detail.hpp:355
Class that manages the sampler in order to select regions for the update the model of the tracker [AA...
Definition: tracking.detail.hpp:129
bool addTrackerSamplerAlgorithm(const Ptr< TrackerSamplerAlgorithm > &sampler)
Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
const std::vector< Ptr< TrackerSamplerAlgorithm > > & getSamplers() const
Return the collection of the TrackerSamplerAlgorithm
const std::vector< Mat > & getSamples() const
Return the samples from all TrackerSamplerAlgorithm, Fig. 1 variable Sk
void sampling(const Mat &image, Rect boundingBox)
Computes the regions starting from a position in an image
Abstract base class for TrackerStateEstimator that estimates the most likely target state.
Definition: tracking.detail.hpp:231
static Ptr< TrackerStateEstimator > create(const String &trackeStateEstimatorType)
Create TrackerStateEstimator by tracker state estimator type
void update(std::vector< ConfidenceMap > &confidenceMaps)
Update the ConfidenceMap with the scores
String getClassName() const
Get the name of the specific TrackerStateEstimator
Ptr< TrackerTargetState > estimate(const std::vector< ConfidenceMap > &confidenceMaps)
Estimate the most likely target state, return the estimated state
Abstract base class for TrackerTargetState that represents a possible state of the target.
Definition: tracking.detail.hpp:172
Point2f getTargetPosition() const
Get the position
int getTargetHeight() const
Get the height of the target
void setTargetHeight(int height)
Set the height of the target
void setTargetPosition(const Point2f &position)
Set the position
void setTargetWidth(int width)
Set the width of the target
int getTargetWidth() const
Get the width of the target
std::vector< Ptr< TrackerTargetState > > Trajectory
Represents the estimate states for all frames
Definition: tracking.detail.hpp:222
std::vector< std::pair< Ptr< TrackerTargetState >, float > > ConfidenceMap
Represents the model of the target at frame (all states and scores)
Definition: tracking.detail.hpp:214
cv
"black box" representation of the file storage associated with a file on disk.
Definition: aruco.hpp:75
Definition: cvstd_wrapper.hpp:74
Definition: tracking.detail.hpp:364
int trackMaxNegNum
Definition: tracking.detail.hpp:371
float initInRad
radius for gathering positive instances during init
Definition: tracking.detail.hpp:366
float trackInPosRad
radius for gathering positive instances during tracking
Definition: tracking.detail.hpp:367
int initMaxNegNum
Definition: tracking.detail.hpp:369
float searchWinSize
size of search window
Definition: tracking.detail.hpp:368
int trackMaxPosNum
Definition: tracking.detail.hpp:370