OpenCV 4.5.3(日本語機械翻訳)
クラス | 型定義
Tracking API implementation details

クラス

class cv::detail::tracking::TrackerContribFeature
の抽象基底クラスTrackerContribFeatureの抽象的な基底クラスで、そのフィーチャーを表します。[【詳解】(英語]
class cv::detail::tracking::TrackerContribFeatureSet
特徴量の抽出と選択を管理するクラス[【詳解】(英語]
class cv::detail::tracking::TrackerContribSamplerAlgorithm
の抽象基底クラスTrackerContribSamplerAlgorithmは、特定のサンプラーのアルゴリズムを表すものです。[【詳解】(英語]
class cv::detail::tracking::TrackerContribSampler
トラッカーのモデルを更新するために,リージョンを選択するためのサンプラーを管理するクラス [AAM] Sampling e Labeling. 表IとセクションIII Bを参照[【詳解】(英語]
class cv::detail::tracking::TrackerStateEstimatorAdaBoosting
TrackerStateEstimatorAdaBoostingADA-Boostingに基づく[【詳解】(英語]
class cv::detail::tracking::TrackerStateEstimatorSVM
TrackerStateEstimatorSVMに基づく[【詳解】(英語]
class cv::detail::tracking::TrackerContribSamplerCSC
TrackerSamplerMILアルゴリズムで使用されるCSC(current state centered)に基づくTrackerMIL [【詳解】(英語]
class cv::detail::tracking::TrackerSamplerCS
TrackerContribSamplerCS(現在の状態)に基づいて、アルゴリズムTrackerBoostingで使用される[【詳解】(英語]
class cv::detail::tracking::TrackerSamplerPF
このサンプラーはパーティクルフィルタリングに基づいています。[【詳解】(英語]
class cv::detail::tracking::TrackerFeatureFeature2d
TrackerContribFeatureに基づくFeature2D [【詳解】(英語]
class cv::detail::tracking::TrackerFeatureHOG
TrackerContribFeatureHOGに基づく[【詳解】(英語]
class cv::detail::tracking::TrackerContribFeatureHAAR
TrackerContribFeatureHAARの特徴に基づいて、以下のように使用されます。TrackerMIL他にも多くのアルゴリズムで使用されています[【詳解】(英語]
class cv::detail::tracking::TrackerFeatureLBP
TrackerContribFeatureLBPに基づく[【詳解】(英語]
class cv::detail::tracking::TrackerFeature
の抽象基底クラスTrackerFeatureの抽象的な基底クラスで、そのフィーチャーを表します。[【詳解】(英語]
class cv::detail::tracking::TrackerFeatureSet
特徴量の抽出と選択を管理するクラス[【詳解】(英語]
class cv::detail::tracking::TrackerSamplerAlgorithm
の抽象基底クラスTrackerSamplerAlgorithmは、特定のサンプラーのアルゴリズムを表すものです。[【詳解】(英語]
class cv::detail::tracking::TrackerSampler
トラッカーのモデルを更新するために,リージョンを選択するためのサンプラーを管理するクラス [AAM] Sampling e Labeling. 表IとセクションIII Bを参照[【詳解】(英語]
class cv::detail::tracking::TrackerTargetState
の抽象基底クラスTrackerTargetStateターゲットの状態の候補を表す[【詳解】(英語]
class cv::detail::tracking::TrackerStateEstimator
の抽象基底クラスTrackerStateEstimator最も可能性の高いターゲットの状態を推定する[【詳解】(英語]
class cv::detail::tracking::TrackerModel
ターゲットのモデルを表す抽象クラス。[【詳解】(英語]
class cv::detail::tracking::TrackerSamplerCSC
TrackerSamplerMILアルゴリズムで使用されるCSC(current state centered)に基づくTrackerMIL [【詳解】(英語]

型定義

typedef std::vector< std::pair< Ptr< TrackerTargetState >, float > > cv::detail::ConfidenceMap
フレームでのターゲットのモデルを表す$k$(すべての状態とスコア)[【詳解】(英語]
typedef std::vector< Ptr< TrackerTargetState > > cv::detail::Trajectory
すべてのフレームの推定状態を表す[【詳解】(英語]

詳解

Long-term optical tracking API

Long-term optical tracking is an important issue for many computer vision applications in real world scenario. The development in this area is very fragmented and this API is an unique interface useful for plug several algorithms and compare them. This work is partially based on [AAM] and [AMVOT] .

These algorithms start from a bounding box of the target and with their internal representation they avoid the drift during the tracking. These long-term trackers are able to evaluate online the quality of the location of the target in the new frame, without ground truth.

There are three main components: the TrackerContribSampler, the TrackerContribFeatureSet and the TrackerModel. The first component is the object that computes the patches over the frame based on the last target location. The TrackerContribFeatureSet is the class that manages the Features, is possible plug many kind of these (HAAR, HOG, LBP, Feature2D, etc). The last component is the internal representation of the target, it is the appearance model. It stores all state candidates and compute the trajectory (the most likely target states). The class TrackerTargetState represents a possible state of the target. The TrackerContribSampler and the TrackerContribFeatureSet are the visual representation of the target, instead the TrackerModel is the statistical model.

A recent benchmark between these algorithms can be found in [OOT]

Creating Your Own %Tracker

If you want to create a new tracker, here's what you have to do. First, decide on the name of the class for the tracker (to meet the existing style, we suggest something with prefix "tracker", e.g. trackerMIL, trackerBoosting) – we shall refer to this choice as to "classname" in subsequent.

Every tracker has three component TrackerContribSampler, TrackerContribFeatureSet and TrackerModel. The first two are instantiated from Tracker base class, instead the last component is abstract, so you must implement your TrackerModel.

TrackerContribSampler

TrackerContribSampler is already instantiated, but you should define the sampling algorithm and add the classes (or single class) to TrackerContribSampler. You can choose one of the ready implementation as TrackerContribSamplerCSC or you can implement your sampling method, in this case the class must inherit TrackerContribSamplerAlgorithm. Fill the samplingImpl method that writes the result in "sample" output argument.

Example of creating specialized TrackerContribSamplerAlgorithm TrackerContribSamplerCSC : :

{
public:
...
protected:
bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
...
};
n-dimensional dense array class
Definition: mat.hpp:802
Template class for 2D rectangles
Definition: core/types.hpp:421
Abstract base class for TrackerContribSamplerAlgorithm that represents the algorithm for the specific...
Definition: tracking_internals.hpp:395
TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
Definition: tracking_internals.hpp:642
Definition: tracking_internals.hpp:654

Example of adding TrackerContribSamplerAlgorithm to TrackerContribSampler : :

//sampler is the TrackerContribSampler
if( !sampler->addTrackerSamplerAlgorithm( CSCSampler ) )
return false;
//or add CSC sampler with default parameters
//sampler->addTrackerSamplerAlgorithm( "CSC" );
参照
TrackerContribSamplerCSC, TrackerContribSamplerAlgorithm

TrackerContribFeatureSet

TrackerContribFeatureSet is already instantiated (as first) , but you should define what kinds of features you'll use in your tracker. You can use multiple feature types, so you can add a ready implementation as TrackerContribFeatureHAAR in your TrackerContribFeatureSet or develop your own implementation. In this case, in the computeImpl method put the code that extract the features and in the selection method optionally put the code for the refinement and selection of the features.

Example of creating specialized TrackerFeature TrackerContribFeatureHAAR : :

class CV_EXPORTS_W TrackerContribFeatureHAAR : public TrackerFeature
{
public:
void selection( Mat& response, int npoints );
...
protected:
bool computeImpl( const std::vector<Mat>& images, Mat& response );
...
};
TrackerContribFeature based on HAAR features, used by TrackerMIL and many others algorithms
Definition: tracking_internals.hpp:851
Abstract base class for TrackerFeature that represents the feature.
Definition: tracking.detail.hpp:33
Definition: tracking_internals.hpp:854

Example of adding TrackerFeature to TrackerContribFeatureSet : :

//featureSet is the TrackerContribFeatureSet
Ptr<TrackerFeature> trackerFeature = new TrackerContribFeatureHAAR( HAARparameters );
featureSet->addTrackerFeature( trackerFeature );
参照
TrackerContribFeatureHAAR, TrackerContribFeatureSet

TrackerModel

TrackerModel is abstract, so in your implementation you must develop your TrackerModel that inherit from TrackerModel. Fill the method for the estimation of the state "modelEstimationImpl", that estimates the most likely target location, see [AAM] table I (ME) for further information. Fill "modelUpdateImpl" in order to update the model, see [AAM] table I (MU). In this class you can use the :cConfidenceMap and :cTrajectory to storing the model. The first represents the model on the all possible candidate states and the second represents the list of all estimated states.

Example of creating specialized TrackerModel TrackerMILModel : :

class TrackerMILModel : public TrackerModel
{
public:
TrackerMILModel( const Rect& boundingBox );
~TrackerMILModel();
...
protected:
void modelEstimationImpl( const std::vector<Mat>& responses );
void modelUpdateImpl();
...
};
Abstract class that represents the model of the target.
Definition: tracking.detail.hpp:277

And add it in your Tracker : :

bool TrackerMIL::initImpl( const Mat& image, const Rect2d& boundingBox )
{
...
//model is the general TrackerModel field of the general Tracker
model = new TrackerMILModel( boundingBox );
...
}

In the last step you should define the TrackerStateEstimator based on your implementation or you can use one of ready class as TrackerStateEstimatorMILBoosting. It represent the statistical part of the model that estimates the most likely target state.

Example of creating specialized TrackerStateEstimator TrackerStateEstimatorMILBoosting : :

class CV_EXPORTS_W TrackerStateEstimatorMILBoosting : public TrackerStateEstimator
{
class TrackerMILTargetState : public TrackerTargetState
{
...
};
public:
TrackerStateEstimatorMILBoosting( int nFeatures = 250 );
~TrackerStateEstimatorMILBoosting();
...
protected:
Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
...
};
Abstract base class for TrackerStateEstimator that estimates the most likely target state.
Definition: tracking.detail.hpp:231
Abstract base class for TrackerTargetState that represents a possible state of the target.
Definition: tracking.detail.hpp:172

And add it in your TrackerModel : :

//model is the TrackerModel of your Tracker
Ptr<TrackerStateEstimatorMILBoosting> stateEstimator = new TrackerStateEstimatorMILBoosting( params.featureSetNumFeatures );
model->setTrackerStateEstimator( stateEstimator );
参照
TrackerModel, TrackerStateEstimatorMILBoosting, TrackerTargetState

During this step, you should define your TrackerTargetState based on your implementation. TrackerTargetState base class has only the bounding box (upper-left position, width and height), you can enrich it adding scale factor, target rotation, etc.

Example of creating specialized TrackerTargetState TrackerMILTargetState : :

class TrackerMILTargetState : public TrackerTargetState
{
public:
TrackerMILTargetState( const Point2f& position, int targetWidth, int targetHeight, bool foreground, const Mat& features );
~TrackerMILTargetState();
...
private:
bool isTarget;
Mat targetFeatures;
...
};

型定義詳解

ConfidenceMap

typedef std::vector<std::pair<Ptr<TrackerTargetState>, float> > cv::detail::tracking::ConfidenceMap

フレームでのターゲットのモデルを表す$k$(すべての状態とスコア)

参照[AAM].ペアのセット$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle$

参照
TrackerTargetState

Trajectory

すべてのフレームの推定状態を表す

[AAM]. $x_{k}$は時間までのターゲットの軌跡を表す$k$

参照
TrackerTargetState