OpenCV 4.5.3(日本語機械翻訳)
core.hpp
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
16 // Copyright (C) 2015, Itseez Inc., all rights reserved.
17 // Third party copyrights are property of their respective owners.
18 //
19 // Redistribution and use in source and binary forms, with or without modification,
20 // are permitted provided that the following conditions are met:
21 //
22 // * Redistribution's of source code must retain the above copyright notice,
23 // this list of conditions and the following disclaimer.
24 //
25 // * Redistribution's in binary form must reproduce the above copyright notice,
26 // this list of conditions and the following disclaimer in the documentation
27 // and/or other materials provided with the distribution.
28 //
29 // * The name of the copyright holders may not be used to endorse or promote products
30 // derived from this software without specific prior written permission.
31 //
32 // This software is provided by the copyright holders and contributors "as is" and
33 // any express or implied warranties, including, but not limited to, the implied
34 // warranties of merchantability and fitness for a particular purpose are disclaimed.
35 // In no event shall the Intel Corporation or contributors be liable for any direct,
36 // indirect, incidental, special, exemplary, or consequential damages
37 // (including, but not limited to, procurement of substitute goods or services;
38 // loss of use, data, or profits; or business interruption) however caused
39 // and on any theory of liability, whether in contract, strict liability,
40 // or tort (including negligence or otherwise) arising in any way out of
41 // the use of this software, even if advised of the possibility of such damage.
42 //
43 //M*/
44
45 #ifndef OPENCV_CORE_HPP
46 #define OPENCV_CORE_HPP
47
48 #ifndef __cplusplus
49 # error core.hpp header must be compiled as C++
50 #endif
51
52 #include "opencv2/core/cvdef.h"
53 #include "opencv2/core/base.hpp"
54 #include "opencv2/core/cvstd.hpp"
55 #include "opencv2/core/traits.hpp"
56 #include "opencv2/core/matx.hpp"
57 #include "opencv2/core/types.hpp"
58 #include "opencv2/core/mat.hpp"
59 #include "opencv2/core/persistence.hpp"
60
106 namespace cv {
107
110
118 class CV_EXPORTS Exception : public std::exception
119{
120 public:
129 Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
130 virtual ~Exception() throw();
131
135 virtual const char *what() const throw() CV_OVERRIDE;
136 void formatMessage();
137
138 String msg;
139
140 int code;
141 String err;
142 String func;
143 String file;
144 int line;
145};
146
155 CV_EXPORTS CV_NORETURN void error(const Exception& exc);
156
161 SORT_ASCENDING = 0,
163 SORT_DESCENDING = 16
166 };
167
169
172
206 COVAR_COLS = 16
207 };
208
211
223 };
224
226
229
233 REDUCE_MIN = 3
234 };
235
237
240 CV_EXPORTS void swap(Mat& a, Mat& b);
242 CV_EXPORTS void swap( UMat& a, UMat& b );
243
245
248
270 CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
271
320 CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
321 int top, int bottom, int left, int right,
322 int borderType, const Scalar& value = Scalar() );
323
360 CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
361 InputArray mask = noArray(), int dtype = -1);
362
400 CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
401 InputArray mask = noArray(), int dtype = -1);
402
403
425 CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
426 OutputArray dst, double scale = 1, int dtype = -1);
427
453 CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
454 double scale = 1, int dtype = -1);
455
457 CV_EXPORTS_W void divide(double scale, InputArray src2,
458 OutputArray dst, int dtype = -1);
459
478 CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
479
506 CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
507 double beta, double gamma, OutputArray dst, int dtype = -1);
508
534 CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
535 double alpha = 1, double beta = 0);
536
547 CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst);
548
563 CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
564
572 CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
573
581 CV_EXPORTS_W int countNonZero( InputArray src );
582
609 CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
610
622 CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
623
644 CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
645 InputArray mask=noArray());
646
683 CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
684
696 CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
697 int normType = NORM_L2, InputArray mask = noArray());
702 CV_EXPORTS double norm( const SparseMat& src, int normType );
703
723 CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2, double R=255.);
724
730 CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
731 OutputArray dist, int dtype, OutputArray nidx,
732 int normType = NORM_L2, int K = 0,
733 InputArray mask = noArray(), int update = 0,
734 bool crosscheck = false);
735
794 CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
795 int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
796
804 CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
805
824 CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
825 CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
826 CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
827
828
852 CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
853 int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
854
864 CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
865 double* maxVal, int* minIdx = 0, int* maxIdx = 0);
866
891 CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
892
912 CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
913
920 CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
921
937 CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
938
943 CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
944
986 CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
987 const int* fromTo, size_t npairs);
988
1003 CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
1004 const int* fromTo, size_t npairs);
1005
1019 CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
1020 const std::vector<int>& fromTo);
1021
1028 CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
1029
1036 CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
1037
1070 CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
1071
1076};
1088 CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
1089
1103 CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
1104
1112 CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
1113
1135 CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
1156 CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
1175 CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
1176
1197 CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
1221 CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
1239 CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
1240
1266 CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
1267 OutputArray dst, InputArray mask = noArray());
1268
1293 CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
1294 OutputArray dst, InputArray mask = noArray());
1295
1321 CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
1322 OutputArray dst, InputArray mask = noArray());
1323
1338 CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
1339 InputArray mask = noArray());
1340
1364 CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
1365
1376 void CV_EXPORTS_W copyTo(InputArray src, OutputArray dst, InputArray mask);
1396 CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
1397 InputArray upperb, OutputArray dst);
1398
1425 CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
1426
1438 CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
1442 CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
1446 CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
1447
1459 CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
1463 CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
1467 CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
1468
1478 CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
1479
1503 CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
1504
1519 CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
1520
1532 CV_EXPORTS_W void log(InputArray src, OutputArray dst);
1533
1554 CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
1555 OutputArray x, OutputArray y, bool angleInDegrees = false);
1556
1575 CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
1577 bool angleInDegrees = false);
1578
1595 CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
1596 bool angleInDegrees = false);
1597
1609 CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
1610
1626 CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
1627 double minVal = -DBL_MAX, double maxVal = DBL_MAX);
1628
1633 CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
1634
1663 CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
1664 InputArray src3, double beta, OutputArray dst, int flags = 0);
1665
1694 CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
1695 InputArray delta = noArray(),
1696 double scale = 1, int dtype = -1 );
1697
1707 CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
1708
1733 CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
1734
1760 CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
1761
1776 CV_EXPORTS_W void completeSymm(InputOutputArray m, bool lowerToUpper = false);
1777
1793 CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
1794
1808 CV_EXPORTS_W double determinant(InputArray mtx);
1809
1817 CV_EXPORTS_W Scalar trace(InputArray mtx);
1818
1844 CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
1845
1868 CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
1869 OutputArray dst, int flags = DECOMP_LU);
1870
1884 CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
1885
1904 CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
1905
1919 CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
1920
1929 CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
1930
1950 CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
1951 OutputArray eigenvectors = noArray());
1952
1967 CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues,
1968 OutputArray eigenvectors);
1969
1983 CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
1984 int flags, int ctype = CV_64F);
1985
1994 CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
1995 InputOutputArray mean, int flags, int ctype = CV_64F);
1996
1998 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
1999 OutputArray eigenvectors, int maxComponents = 0);
2000
2002 CV_EXPORTS_AS(PCACompute2) void PCACompute(InputArray data, InputOutputArray mean,
2003 OutputArray eigenvectors, OutputArray eigenvalues,
2004 int maxComponents = 0);
2005
2007 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
2008 OutputArray eigenvectors, double retainedVariance);
2009
2011 CV_EXPORTS_AS(PCACompute2) void PCACompute(InputArray data, InputOutputArray mean,
2012 OutputArray eigenvectors, OutputArray eigenvalues,
2013 double retainedVariance);
2014
2016 CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
2017 InputArray eigenvectors, OutputArray result);
2018
2020 CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
2021 InputArray eigenvectors, OutputArray result);
2022
2024 CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
2025
2027 CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
2028 InputArray rhs, OutputArray dst );
2029
2040 CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
2041
2174 CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2175
2188 CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2189
2229 CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
2230
2239 CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
2240
2258 CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
2259 int flags, bool conjB = false);
2260
2282 CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
2283
2293 CV_EXPORTS RNG& theRNG();
2294
2301 CV_EXPORTS_W void setRNGSeed(int seed);
2302
2313 CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
2314
2326 CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
2327
2339 CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
2340
2406 class CV_EXPORTS PCA
2407{
2408 public:
2409 enum Flags { DATA_AS_ROW = 0,
2410 DATA_AS_COL = 1,
2411 USE_AVG = 2
2412 };
2413
2420
2430 PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2431
2442 PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
2443
2464 PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2465
2477 PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
2478
2493 Mat project(InputArray vec) const;
2494
2507 void project(InputArray vec, OutputArray result) const;
2508
2522 Mat backProject(InputArray vec) const;
2523
2531 void backProject(InputArray vec, OutputArray result) const;
2532
2537 void write(FileStorage& fs) const;
2538
2543 void read(const FileNode& fn);
2544
2548};
2549
2562 class CV_EXPORTS LDA
2563{
2564 public:
2568 explicit LDA(int num_components = 0);
2569
2575 LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
2576
2579 void save(const String& filename) const;
2580
2583 void load(const String& filename);
2584
2587 void save(FileStorage& fs) const;
2588
2591 void load(const FileStorage& node);
2592
2596
2599 void compute(InputArrayOfArrays src, InputArray labels);
2600
2604 Mat project(InputArray src);
2605
2609 Mat reconstruct(InputArray src);
2610
2613 Mat eigenvectors() const { return _eigenvectors; }
2614
2617 Mat eigenvalues() const { return _eigenvalues; }
2618
2619 static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
2620 static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
2621
2622 protected:
2623 int _num_components;
2624 Mat _eigenvectors;
2625 Mat _eigenvalues;
2626 void lda(InputArrayOfArrays src, InputArray labels);
2627};
2628
2643 class CV_EXPORTS SVD
2644{
2645 public:
2646 enum Flags {
2649 MODIFY_A = 1,
2652 NO_UV = 2,
2656 FULL_UV = 4
2658
2664
2670 SVD( InputArray src, int flags = 0 );
2671
2683 SVD& operator ()( InputArray src, int flags = 0 );
2684
2702 static void compute( InputArray src, OutputArray w,
2703 OutputArray u, OutputArray vt, int flags = 0 );
2704
2711 static void compute( InputArray src, OutputArray w, int flags = 0 );
2712
2715 static void backSubst( InputArray w, InputArray u,
2716 InputArray vt, InputArray rhs,
2717 OutputArray dst );
2718
2729 static void solveZ( InputArray src, OutputArray dst );
2730
2753 void backSubst( InputArray rhs, OutputArray dst ) const;
2754
2756 template<typename _Tp, int m, int n, int nm> static
2758
2760 template<typename _Tp, int m, int n, int nm> static
2762
2764 template<typename _Tp, int m, int n, int nm, int nb> static
2765 void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
2766
2767 Mat u, w, vt;
2768};
2769
2782 class CV_EXPORTS RNG
2783{
2784 public:
2785 enum { UNIFORM = 0,
2786 NORMAL = 1
2787 };
2788
2801 RNG(uint64 state);
2804 unsigned next();
2805
2812 operator uchar();
2814 operator schar();
2816 operator ushort();
2818 operator short();
2820 operator unsigned();
2822 operator int();
2824 operator float();
2826 operator double();
2827
2835 unsigned operator ()();
2839 unsigned operator ()(unsigned N);
2840
2877 int uniform(int a, int b);
2879 float uniform(float a, float b);
2881 double uniform(double a, double b);
2882
2917 void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
2918
2927 double gaussian(double sigma);
2928
2929 uint64 state;
2930
2931 bool operator ==(const RNG& other) const;
2932};
2933
2939 class CV_EXPORTS RNG_MT19937
2940{
2941 public:
2942 RNG_MT19937();
2943 RNG_MT19937(unsigned s);
2944 void seed(unsigned s);
2945
2946 unsigned next();
2947
2948 operator int();
2949 operator unsigned();
2950 operator float();
2951 operator double();
2952
2953 unsigned operator ()(unsigned N);
2954 unsigned operator ()();
2955
2957 int uniform(int a, int b);
2959 float uniform(float a, float b);
2961 double uniform(double a, double b);
2962
2963 private:
2964 enum PeriodParameters {N = 624, M = 397};
2965 unsigned state[N];
2966 int mti;
2967};
2968
2970
2973
3011 CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
3012 TermCriteria criteria, int attempts,
3013 int flags, OutputArray centers = noArray() );
3014
3016
3019
3021
3023 class CV_EXPORTS Formatted
3024{
3025 public:
3026 virtual const char* next() = 0;
3027 virtual void reset() = 0;
3028 virtual ~Formatted();
3029};
3030
3032 class CV_EXPORTS Formatter
3033{
3034 public:
3035 enum FormatType {
3036 FMT_DEFAULT = 0,
3037 FMT_MATLAB = 1,
3038 FMT_CSV = 2,
3039 FMT_PYTHON = 3,
3040 FMT_NUMPY = 4,
3041 FMT_C = 5
3042 };
3043
3044 virtual ~Formatter();
3045
3046 virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
3047
3048 virtual void set16fPrecision(int p = 4) = 0;
3049 virtual void set32fPrecision(int p = 8) = 0;
3050 virtual void set64fPrecision(int p = 16) = 0;
3051 virtual void setMultiline(bool ml = true) = 0;
3052
3053 static Ptr<Formatter> get(Formatter::FormatType fmt = FMT_DEFAULT);
3054
3055};
3056
3057 static inline
3058String& operator << (String& out, Ptr<Formatted> fmtd)
3059{
3060 fmtd->reset();
3061 for(const char* str = fmtd->next(); str; str = fmtd->next())
3062 out += cv::String(str);
3063 return out;
3064}
3065
3066 static inline
3067String& operator << (String& out, const Mat& mtx)
3068{
3069 return out << Formatter::get()->format(mtx);
3070}
3071
3073
3074 class CV_EXPORTS Algorithm;
3075
3076 template<typename _Tp, typename _EnumTp = void> struct ParamType {};
3077
3078
3090 class CV_EXPORTS_W Algorithm
3091{
3092 public:
3093 Algorithm();
3094 virtual ~Algorithm();
3095
3098 CV_WRAP virtual void clear() {}
3099
3102 virtual void write(FileStorage& fs) const { CV_UNUSED(fs); }
3103
3107 CV_WRAP void write(const Ptr<FileStorage>& fs, const String& name = String()) const;
3108
3111 CV_WRAP virtual void read(const FileNode& fn) { CV_UNUSED(fn); }
3112
3115 CV_WRAP virtual bool empty() const { return false; }
3116
3128 template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
3129 {
3130 Ptr<_Tp> obj = _Tp::create();
3131 obj->read(fn);
3132 return !obj->empty() ? obj : Ptr<_Tp>();
3133 }
3134
3147 template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
3148 {
3149 FileStorage fs(filename, FileStorage::READ);
3150 CV_Assert(fs.isOpened());
3151 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
3152 if (fn.empty()) return Ptr<_Tp>();
3153 Ptr<_Tp> obj = _Tp::create();
3154 obj->read(fn);
3155 return !obj->empty() ? obj : Ptr<_Tp>();
3156 }
3157
3168 template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
3169 {
3171 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
3172 Ptr<_Tp> obj = _Tp::create();
3173 obj->read(fn);
3174 return !obj->empty() ? obj : Ptr<_Tp>();
3175 }
3176
3179 CV_WRAP virtual void save(const String& filename) const;
3180
3183 CV_WRAP virtual String getDefaultName() const;
3184
3185 protected:
3186 void writeFormat(FileStorage& fs) const;
3187};
3188
3189 enum struct Param {
3190 INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
3191 UNSIGNED_INT=8, UINT64=9, UCHAR=11, SCALAR=12
3192};
3193
3194
3195
3196 template<> struct ParamType<bool>
3197{
3198 typedef bool const_param_type;
3199 typedef bool member_type;
3200
3201 static const Param type = Param::BOOLEAN;
3202};
3203
3204 template<> struct ParamType<int>
3205{
3206 typedef int const_param_type;
3207 typedef int member_type;
3208
3209 static const Param type = Param::INT;
3210};
3211
3212 template<> struct ParamType<double>
3213{
3214 typedef double const_param_type;
3215 typedef double member_type;
3216
3217 static const Param type = Param::REAL;
3218};
3219
3220 template<> struct ParamType<String>
3221{
3222 typedef const String& const_param_type;
3223 typedef String member_type;
3224
3225 static const Param type = Param::STRING;
3226};
3227
3228 template<> struct ParamType<Mat>
3229{
3230 typedef const Mat& const_param_type;
3231 typedef Mat member_type;
3232
3233 static const Param type = Param::MAT;
3234};
3235
3236 template<> struct ParamType<std::vector<Mat> >
3237{
3238 typedef const std::vector<Mat>& const_param_type;
3239 typedef std::vector<Mat> member_type;
3240
3241 static const Param type = Param::MAT_VECTOR;
3242};
3243
3244 template<> struct ParamType<Algorithm>
3245{
3246 typedef const Ptr<Algorithm>& const_param_type;
3248
3249 static const Param type = Param::ALGORITHM;
3250};
3251
3252 template<> struct ParamType<float>
3253{
3254 typedef float const_param_type;
3255 typedef float member_type;
3256
3257 static const Param type = Param::FLOAT;
3258};
3259
3260 template<> struct ParamType<unsigned>
3261{
3262 typedef unsigned const_param_type;
3263 typedef unsigned member_type;
3264
3265 static const Param type = Param::UNSIGNED_INT;
3266};
3267
3268 template<> struct ParamType<uint64>
3269{
3270 typedef uint64 const_param_type;
3271 typedef uint64 member_type;
3272
3273 static const Param type = Param::UINT64;
3274};
3275
3276 template<> struct ParamType<uchar>
3277{
3278 typedef uchar const_param_type;
3279 typedef uchar member_type;
3280
3281 static const Param type = Param::UCHAR;
3282};
3283
3284 template<> struct ParamType<Scalar>
3285{
3286 typedef const Scalar& const_param_type;
3287 typedef Scalar member_type;
3288
3289 static const Param type = Param::SCALAR;
3290};
3291
3292 template<typename _Tp>
3293 struct ParamType<_Tp, typename std::enable_if< std::is_enum<_Tp>::value >::type>
3294{
3295 typedef typename std::underlying_type<_Tp>::type const_param_type;
3296 typedef typename std::underlying_type<_Tp>::type member_type;
3297
3298 static const Param type = Param::INT;
3299};
3300
3302
3303} //namespace cv
3304
3305 #include "opencv2/core/operations.hpp"
3306 #include "opencv2/core/cvstd.inl.hpp"
3307 #include "opencv2/core/utility.hpp"
3308 #include "opencv2/core/optim.hpp"
3309 #include "opencv2/core/ovx.hpp"
3310
3311 #endif /*OPENCV_CORE_HPP*/
Definition: mat.hpp:386
This type is very similar to InputArray except that it is used for input/output and output function p...
Definition: mat.hpp:295
This is a base class for all more or less complex algorithms in OpenCV
Definition: core.hpp:3091
virtual void write(FileStorage &fs) const
Stores algorithm parameters in a file storage
Definition: core.hpp:3102
static Ptr< _Tp > load(const String &filename, const String &objname=String())
Loads algorithm from the file
Definition: core.hpp:3147
static Ptr< _Tp > read(const FileNode &fn)
Reads algorithm from the file node
Definition: core.hpp:3128
static Ptr< _Tp > loadFromString(const String &strModel, const String &objname=String())
Loads algorithm from a String
Definition: core.hpp:3168
Class passed to an error.
Definition: core.hpp:119
Exception(int _code, const String &_err, const String &_func, const String &_file, int _line)
File Storage Node class.
Definition: persistence.hpp:482
CV_WRAP bool empty() const
returns true if the node is empty
XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or readi...
Definition: persistence.hpp:304
CV_WRAP FileNode getFirstTopLevelNode() const
Returns the first element of the top-level mapping.
@ READ
value, open the file for reading
Definition: persistence.hpp:309
@ MEMORY
returned by FileStorage::release)
Definition: persistence.hpp:312
virtual CV_WRAP bool isOpened() const
Checks whether the file is opened.
Definition: core.hpp:3024
Definition: core.hpp:3033
Linear Discriminant Analysis
Definition: core.hpp:2563
Mat eigenvalues() const
Definition: core.hpp:2617
void save(FileStorage &fs) const
LDA(InputArrayOfArrays src, InputArray labels, int num_components=0)
Mat reconstruct(InputArray src)
void save(const String &filename) const
void compute(InputArrayOfArrays src, InputArray labels)
LDA(int num_components=0)
constructor Initializes a LDA with num_components (default 0).
Mat eigenvectors() const
Definition: core.hpp:2613
void load(const String &filename)
Mat project(InputArray src)
void load(const FileStorage &node)
~LDA()
n-dimensional dense array class
Definition: mat.hpp:802
Template class for small matrices whose type and size are known at compilation time
Definition: matx.hpp:100
Principal Component Analysis
Definition: core.hpp:2407
void project(InputArray vec, OutputArray result) const
Mat mean
mean value subtracted before the projection and added after the back projection
Definition: core.hpp:2547
Mat eigenvalues
eigenvalues of the covariation matrix
Definition: core.hpp:2546
void backProject(InputArray vec, OutputArray result) const
PCA()
default constructor
PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
Mat backProject(InputArray vec) const
Reconstructs vectors from their PC projections.
PCA & operator()(InputArray data, InputArray mean, int flags, int maxComponents=0)
performs PCA
PCA & operator()(InputArray data, InputArray mean, int flags, double retainedVariance)
Mat project(InputArray vec) const
Projects vector(s) to the principal component subspace.
void write(FileStorage &fs) const
write PCA objects
Mat eigenvectors
eigenvectors of the covariation matrix
Definition: core.hpp:2545
void read(const FileNode &fn)
load PCA objects
Flags
Definition: core.hpp:2409
PCA(InputArray data, InputArray mean, int flags, double retainedVariance)
Mersenne Twister random number generator
Definition: core.hpp:2940
int uniform(int a, int b)
returns uniformly distributed integer random number from [a,b) range
float uniform(float a, float b)
returns uniformly distributed floating-point random number from [a,b) range
double uniform(double a, double b)
returns uniformly distributed double-precision floating-point random number from [a,...
Random Number Generator
Definition: core.hpp:2783
RNG()
constructor
RNG(uint64 state)
float uniform(float a, float b)
double uniform(double a, double b)
double gaussian(double sigma)
Returns the next random number sampled from the Gaussian distribution
int uniform(int a, int b)
returns uniformly distributed integer random number from [a,b) range
void fill(InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false)
Fills arrays with random numbers.
unsigned next()
Singular Value Decomposition
Definition: core.hpp:2644
SVD()
the default constructor
Flags
Definition: core.hpp:2646
SVD(InputArray src, int flags=0)
static void compute(const Matx< _Tp, m, n > &a, Matx< _Tp, nm, 1 > &w)
static void compute(const Matx< _Tp, m, n > &a, Matx< _Tp, nm, 1 > &w, Matx< _Tp, m, nm > &u, Matx< _Tp, n, nm > &vt)
static void compute(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0)
decomposes matrix and stores the results to user-provided matrices
static void backSubst(InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst)
performs back substitution
void backSubst(InputArray rhs, OutputArray dst) const
performs a singular value back substitution.
static void compute(InputArray src, OutputArray w, int flags=0)
static void solveZ(InputArray src, OutputArray dst)
solves an under-determined singular linear system
static void backSubst(const Matx< _Tp, nm, 1 > &w, const Matx< _Tp, m, nm > &u, const Matx< _Tp, n, nm > &vt, const Matx< _Tp, m, nb > &rhs, Matx< _Tp, n, nb > &dst)
The class SparseMat represents multi-dimensional sparse numerical arrays.
Definition: mat.hpp:2704
The class defining termination criteria for iterative algorithms.
Definition: core/types.hpp:853
Definition: mat.hpp:2402
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera(InputArrayOfArrays objectPoints
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi)
Inserts a single channel to dst (coi is 0-based index)
CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType)
Computes the source location of an extrapolated pixel.
CV_EXPORTS void minMaxIdx(InputArray src, double *minVal, double *maxVal=0, int *minIdx=0, int *maxIdx=0, InputArray mask=noArray())
Finds the global minimum and maximum in an array
CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.
CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst, double alpha=1, double beta=0)
Scales, calculates absolute values, and converts the result to 8-bit.
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, OutputArray eigenvectors, int maxComponents=0)
CV_EXPORTS_W void SVDecomp(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0)
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors=noArray())
Calculates eigenvalues and eigenvectors of a symmetric matrix.
void CV_EXPORTS_W copyTo(InputArray src, OutputArray dst, InputArray mask)
This is an overloaded member function, provided for convenience (python) Copies the matrix to another...
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, OutputArray dst, int flags=0)
Performs generalized matrix multiplication.
CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1)
Reduces a matrix to a vector.
ReduceTypes
Definition: core.hpp:230
CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar)
Calculates the Mahalanobis distance between two vectors.
CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m)
Performs the matrix transformation of every array element.
CV_EXPORTS void split(const Mat &src, Mat *mvbegin)
Divides a multi-channel array into several single-channel arrays.
CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c, int flags, bool conjB=false)
Performs the per-element multiplication of two Fourier spectrums.
CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees=false)
Calculates x and y coordinates of 2D vectors from their magnitude and angle.
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst)
Calculates per-element maximum of two arrays or an array and a scalar.
CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots)
Finds the real roots of a cubic equation.
CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags)
Sorts each row or each column of a matrix.
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst)
Calculates a square root of array elements.
CV_EXPORTS void merge(const Mat *mv, size_t count, OutputArray dst)
Creates one multi-channel array out of several single-channel ones.
CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees=false)
Calculates the magnitude and angle of 2D vectors.
CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags=0)
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
CV_EXPORTS_W void completeSymm(InputOutputArray m, bool lowerToUpper=false)
Copies the lower or the upper half of a square matrix to its another half.
CV_EXPORTS_W void SVBackSubst(InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst)
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst)
Performs a look-up table transform of an array.
CV_EXPORTS_W void exp(InputArray src, OutputArray dst)
Calculates the exponent of every array element.
CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags=0)
Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)
Calculates the rotation angle of 2D vectors.
CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double *minVal, CV_OUT double *maxVal=0, CV_OUT Point *minLoc=0, CV_OUT Point *maxLoc=0, InputArray mask=noArray())
Finds the global minimum and maximum in an array.
CV_EXPORTS void vconcat(const Mat *src, size_t nsrc, OutputArray dst)
Applies vertical concatenation to given matrices.
CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors)
Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
CV_EXPORTS_W int getOptimalDFTSize(int vecsize)
Returns the optimal DFT size for a given vector size.
CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray())
CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, const Scalar &value=Scalar())
Forms a border around an image.
CV_EXPORTS RNG & theRNG()
Returns the default random number generator.
RotateFlags
Definition: core.hpp:1072
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop)
Performs the per-element comparison of two arrays or an array and scalar value.
CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
CV_EXPORTS_W int countNonZero(InputArray src)
Counts non-zero array elements.
CV_EXPORTS void hconcat(const Mat *src, size_t nsrc, OutputArray dst)
Applies horizontal concatenation to given matrices.
CV_EXPORTS_W double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())
Calculates the absolute norm of an array.
CV_EXPORTS void mixChannels(const Mat *src, size_t nsrcs, Mat *dst, size_t ndsts, const int *fromTo, size_t npairs)
Copies specified channels from input arrays to the specified channels of output arrays.
CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode)
Rotates a 2D array in multiples of 90 degrees. The function cv::rotate rotates the array in one of th...
CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst)
Calculates the sum of a scaled array and another array.
CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst)
Fills the output array with repeated copies of the input array.
CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags=DECOMP_LU)
Finds the inverse or pseudo-inverse of a matrix.
CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude)
Calculates the magnitude of 2D vectors.
CV_EXPORTS_W void mulTransposed(InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double scale=1, int dtype=-1)
Calculates the product of a matrix and its transposition.
CV_EXPORTS_W bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)
Solves one or more linear systems or least-squares problems.
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi)
Extracts a single channel from src (coi is 0-based index)
CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, InputArray mask=noArray())
Inverts every bit of an array.
CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2, double R=255.)
Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst)
Raises every array element to a power.
CV_EXPORTS_W Scalar trace(InputArray mtx)
Returns the trace of a matrix.
CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags)
Sorts each row or each column of a matrix.
CV_EXPORTS_W bool checkRange(InputArray a, bool quiet=true, CV_OUT Point *pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX)
Checks every element of an input array for invalid values.
CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean, InputArray eigenvectors, OutputArray result)
CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2, OutputArray dist, int dtype, OutputArray nidx, int normType=NORM_L2, int K=0, InputArray mask=noArray(), int update=0, bool crosscheck=false)
naive nearest neighbor finder
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode)
Flips a 2D array around vertical, horizontal, or both axes.
CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst)
Calculates the per-element absolute difference between two arrays or between an array and a scalar.
CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high)
Generates a single uniformly-distributed random number or an array of random numbers.
CV_EXPORTS_W void transpose(InputArray src, OutputArray dst)
Transposes a matrix.
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst)
Calculates per-element minimum of two arrays or an array and a scalar.
CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar &s=Scalar(1))
Initializes a scaled identity matrix.
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
Calculates the per-element sum of two arrays or an array and a scalar.
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor=1., RNG *rng=0)
Shuffles the array elements randomly.
CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
Performs per-element division of two arrays or a scalar by an array.
CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters=300)
Finds the real or complex roots of a polynomial equation.
CV_EXPORTS_W void log(InputArray src, OutputArray dst)
Calculates the natural logarithm of every array element.
CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wis...
CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst)
Converts an array to half precision floating number.
CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)
Checks if array elements lie between the elements of two other arrays.
CV_EXPORTS_W void findNonZero(InputArray src, OutputArray idx)
Returns the list of locations of non-zero pixels
CV_EXPORTS_W double determinant(InputArray mtx)
Returns the determinant of a square floating-point matrix.
CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev)
Fills the array with normally distributed random numbers.
CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
Calculates the per-element scaled product of two arrays.
CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
Calculates the per-element difference between two arrays or array and a scalar.
CV_EXPORTS_W void normalize(InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray())
Normalizes the norm or value range of an array.
CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val=0)
converts NaNs to the given number
CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean, InputArray eigenvectors, OutputArray result)
CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)
Performs the perspective matrix transformation of vectors.
CV_EXPORTS void calcCovarMatrix(const Mat *samples, int nsamples, Mat &covar, Mat &mean, int flags, int ctype=CV_64F)
Calculates the covariance matrix of a set of vectors.
CV_EXPORTS_W void setRNGSeed(int seed)
Sets state of default random number generator.
CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype=-1)
Calculates the weighted sum of two arrays.
@ REDUCE_SUM
the output is the sum of all rows/columns of the matrix.
Definition: core.hpp:230
@ REDUCE_MIN
the output is the minimum (column/row-wise) of all rows/columns of the matrix.
Definition: core.hpp:233
@ REDUCE_AVG
the output is the mean vector of all rows/columns of the matrix.
Definition: core.hpp:231
@ REDUCE_MAX
the output is the maximum (column/row-wise) of all rows/columns of the matrix.
Definition: core.hpp:232
@ ROTATE_90_CLOCKWISE
Rotate 90 degrees clockwise
Definition: core.hpp:1073
@ ROTATE_90_COUNTERCLOCKWISE
Rotate 270 degrees clockwise
Definition: core.hpp:1075
@ ROTATE_180
Rotate 180 degrees clockwise
Definition: core.hpp:1074
@ DECOMP_LU
Definition: base.hpp:135
@ NORM_L2
Definition: base.hpp:185
KmeansFlags
k-Means flags
Definition: core.hpp:213
CV_EXPORTS_W double kmeans(InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts, int flags, OutputArray centers=noArray())
Finds centers of clusters and groups input samples around the clusters.
@ KMEANS_USE_INITIAL_LABELS
Definition: core.hpp:222
@ KMEANS_PP_CENTERS
Definition: core.hpp:217
@ KMEANS_RANDOM_CENTERS
Definition: core.hpp:215
SortFlags
Definition: core.hpp:157
CV_EXPORTS CV_NORETURN void error(const Exception &exc)
Signals an error and raises the exception.
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails
Definition: base.hpp:342
@ SORT_EVERY_COLUMN
Definition: core.hpp:158
@ SORT_ASCENDING
Definition: core.hpp:161
@ SORT_EVERY_ROW
each matrix row is sorted independently
Definition: core.hpp:157
@ SORT_DESCENDING
Definition: core.hpp:163
CovarFlags
Covariation flags
Definition: core.hpp:174
CV_EXPORTS void swap(Mat &a, Mat &b)
Swaps two matrices
@ COVAR_USE_AVG
Definition: core.hpp:193
@ COVAR_NORMAL
Definition: core.hpp:187
@ COVAR_SCRAMBLED
Definition: core.hpp:182
@ COVAR_COLS
Definition: core.hpp:206
@ COVAR_SCALE
Definition: core.hpp:198
@ COVAR_ROWS
Definition: core.hpp:202
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
Draws a line segment connecting two points.
cv
"black box" representation of the file storage associated with a file on disk.
Definition: aruco.hpp:75
DualQuat< T > power(const DualQuat< T > &dq, const T t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
Definition: dualquaternion.inl.hpp:358
Definition: core.hpp:3076
Definition: cvstd_wrapper.hpp:74