44
#ifndef OPENCV_TRACKING_HPP
45
#define OPENCV_TRACKING_HPP
47
#include "opencv2/core.hpp"
48
#include "opencv2/imgproc.hpp"
56
enum
{ OPTFLOW_USE_INITIAL_FLOW = 4,
57
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
58
OPTFLOW_FARNEBACK_GAUSSIAN = 256
122
Size
winSize,
int
maxLevel,
bool
withDerivatives =
true,
125
bool
tryReuseInputImage =
true
);
181
Size
winSize =
Size(21,21),
int
maxLevel = 3,
183
int
flags = 0,
double
minEigThreshold = 1e-4 );
224
double
pyr_scale,
int
levels,
int
winsize,
225
int
iterations,
int
poly_n,
double
poly_sigma,
262
MOTION_TRANSLATION = 0,
263
MOTION_EUCLIDEAN = 1,
265
MOTION_HOMOGRAPHY = 3
279
CV_EXPORTS_W
double
computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray());
339
InputArray inputMask,
int
gaussFiltSize);
346
InputArray inputMask = noArray());
370
CV_WRAP
KalmanFilter(
int
dynamParams,
int
measureParams,
int
controlParams = 0,
int
type = CV_32F );
379
void
init(
int
dynamParams,
int
measureParams,
int
controlParams = 0,
int
type = CV_32F );
385
CV_WRAP
const
Mat& predict(
const
Mat& control =
Mat() );
391
CV_WRAP
const
Mat& correct(
const
Mat& measurement );
395
CV_PROP_RW
Mat
transitionMatrix;
396
CV_PROP_RW
Mat
controlMatrix;
397
CV_PROP_RW
Mat
measurementMatrix;
398
CV_PROP_RW
Mat
processNoiseCov;
399
CV_PROP_RW
Mat
measurementNoiseCov;
400
CV_PROP_RW
Mat
errorCovPre;
402
CV_PROP_RW
Mat
errorCovPost;
448
CV_WRAP
virtual
void
collectGarbage() = 0;
466
CV_WRAP
virtual
void
calc(InputArray prevImg, InputArray nextImg,
478
CV_WRAP
virtual
int
getNumLevels()
const
= 0;
479
CV_WRAP
virtual
void
setNumLevels(
int
numLevels) = 0;
481
CV_WRAP
virtual
double
getPyrScale()
const
= 0;
482
CV_WRAP
virtual
void
setPyrScale(
double
pyrScale) = 0;
484
CV_WRAP
virtual
bool
getFastPyramids()
const
= 0;
485
CV_WRAP
virtual
void
setFastPyramids(
bool
fastPyramids) = 0;
487
CV_WRAP
virtual
int
getWinSize()
const
= 0;
488
CV_WRAP
virtual
void
setWinSize(
int
winSize) = 0;
490
CV_WRAP
virtual
int
getNumIters()
const
= 0;
491
CV_WRAP
virtual
void
setNumIters(
int
numIters) = 0;
493
CV_WRAP
virtual
int
getPolyN()
const
= 0;
494
CV_WRAP
virtual
void
setPolyN(
int
polyN) = 0;
496
CV_WRAP
virtual
double
getPolySigma()
const
= 0;
497
CV_WRAP
virtual
void
setPolySigma(
double
polySigma) = 0;
499
CV_WRAP
virtual
int
getFlags()
const
= 0;
500
CV_WRAP
virtual
void
setFlags(
int
flags) = 0;
504
double
pyrScale = 0.5,
505
bool
fastPyramids =
false,
509
double
polySigma = 1.1,
532
CV_WRAP
virtual
int
getFixedPointIterations()
const
= 0;
534
CV_WRAP
virtual
void
setFixedPointIterations(
int
val) = 0;
539
CV_WRAP
virtual
int
getSorIterations()
const
= 0;
541
CV_WRAP
virtual
void
setSorIterations(
int
val) = 0;
545
CV_WRAP
virtual
float
getOmega()
const
= 0;
547
CV_WRAP
virtual
void
setOmega(
float
val) = 0;
551
CV_WRAP
virtual
float
getAlpha()
const
= 0;
553
CV_WRAP
virtual
void
setAlpha(
float
val) = 0;
557
CV_WRAP
virtual
float
getDelta()
const
= 0;
559
CV_WRAP
virtual
void
setDelta(
float
val) = 0;
563
CV_WRAP
virtual
float
getGamma()
const
= 0;
565
CV_WRAP
virtual
void
setGamma(
float
val) = 0;
589
PRESET_ULTRAFAST = 0,
597
CV_WRAP
virtual
int
getFinestScale()
const
= 0;
599
CV_WRAP
virtual
void
setFinestScale(
int
val) = 0;
604
CV_WRAP
virtual
int
getPatchSize()
const
= 0;
606
CV_WRAP
virtual
void
setPatchSize(
int
val) = 0;
611
CV_WRAP
virtual
int
getPatchStride()
const
= 0;
613
CV_WRAP
virtual
void
setPatchStride(
int
val) = 0;
618
CV_WRAP
virtual
int
getGradientDescentIterations()
const
= 0;
620
CV_WRAP
virtual
void
setGradientDescentIterations(
int
val) = 0;
626
CV_WRAP
virtual
int
getVariationalRefinementIterations()
const
= 0;
628
CV_WRAP
virtual
void
setVariationalRefinementIterations(
int
val) = 0;
632
CV_WRAP
virtual
float
getVariationalRefinementAlpha()
const
= 0;
634
CV_WRAP
virtual
void
setVariationalRefinementAlpha(
float
val) = 0;
638
CV_WRAP
virtual
float
getVariationalRefinementDelta()
const
= 0;
640
CV_WRAP
virtual
void
setVariationalRefinementDelta(
float
val) = 0;
644
CV_WRAP
virtual
float
getVariationalRefinementGamma()
const
= 0;
646
CV_WRAP
virtual
void
setVariationalRefinementGamma(
float
val) = 0;
654
CV_WRAP
virtual
bool
getUseMeanNormalization()
const
= 0;
656
CV_WRAP
virtual
void
setUseMeanNormalization(
bool
val) = 0;
663
CV_WRAP
virtual
bool
getUseSpatialPropagation()
const
= 0;
665
CV_WRAP
virtual
void
setUseSpatialPropagation(
bool
val) = 0;
685
CV_WRAP
virtual
Size
getWinSize()
const
= 0;
686
CV_WRAP
virtual
void
setWinSize(
Size
winSize) = 0;
688
CV_WRAP
virtual
int
getMaxLevel()
const
= 0;
689
CV_WRAP
virtual
void
setMaxLevel(
int
maxLevel) = 0;
691
CV_WRAP
virtual
TermCriteria
getTermCriteria()
const
= 0;
692
CV_WRAP
virtual
void
setTermCriteria(
TermCriteria& crit) = 0;
694
CV_WRAP
virtual
int
getFlags()
const
= 0;
695
CV_WRAP
virtual
void
setFlags(
int
flags) = 0;
697
CV_WRAP
virtual
double
getMinEigThreshold()
const
= 0;
698
CV_WRAP
virtual
void
setMinEigThreshold(
double
minEigThreshold) = 0;
705
double
minEigThreshold = 1e-4);
725
void
init(InputArray image,
const
Rect& boundingBox) = 0;
761
CV_PROP_RW
float
samplerInitInRadius;
762
CV_PROP_RW
int
samplerInitMaxNegNum;
763
CV_PROP_RW
float
samplerSearchWinSize;
764
CV_PROP_RW
float
samplerTrackInRadius;
765
CV_PROP_RW
int
samplerTrackMaxPosNum;
766
CV_PROP_RW
int
samplerTrackMaxNegNum;
767
CV_PROP_RW
int
featureSetNumFeatures;
807
CV_PROP_RW std::string modelTxt;
808
CV_PROP_RW std::string modelBin;
831
CV_PROP_RW std::string model;
832
CV_PROP_RW std::string kernel_cls1;
833
CV_PROP_RW std::string kernel_r1;
834
CV_PROP_RW
int
backend;
835
CV_PROP_RW
int
target;
846
CV_WRAP
virtual
float
getTrackingScore() = 0;
This type is very similar to InputArray except that it is used for input/output and output function p...
Definition:
mat.hpp:295
This is a base class for all more or less complex algorithms in OpenCV
Definition:
core.hpp:3091
DIS optical flow algorithm.
Definition:
video/tracking.hpp:585
Definition:
video/tracking.hpp:437
Class computing a dense optical flow using the Gunnar Farneback's algorithm.
Definition:
video/tracking.hpp:476
Kalman filter class.
Definition:
video/tracking.hpp:361
void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F)
Re-initializes Kalman filter. The previous content is destroyed.
n-dimensional dense array class
Definition:
mat.hpp:802
Template class for 2D rectangles
Definition:
core/types.hpp:421
The class represents rotated (i.e. not up-right) rectangles on a plane.
Definition:
core/types.hpp:504
Template class for specifying the size of an image or rectangle.
Definition:
core/types.hpp:316
Base interface for sparse optical flow algorithms.
Definition:
video/tracking.hpp:454
Class used for calculating a sparse optical flow.
Definition:
video/tracking.hpp:683
The class defining termination criteria for iterative algorithms.
Definition:
core/types.hpp:853
@ EPS
the desired accuracy or change in parameters at which the iterative algorithm stops
Definition:
core/types.hpp:862
@ COUNT
the maximum number of iterations or elements to compute
Definition:
core/types.hpp:860
Definition:
video/tracking.hpp:822
static CV_WRAP Ptr< TrackerDaSiamRPN > create(const TrackerDaSiamRPN::Params ¶meters=TrackerDaSiamRPN::Params())
Constructor
the GOTURN (Generic Object Tracking Using Regression Networks) tracker
Definition:
video/tracking.hpp:798
static CV_WRAP Ptr< TrackerGOTURN > create(const TrackerGOTURN::Params ¶meters=TrackerGOTURN::Params())
Constructor
Base abstract class for the long-term tracker
Definition:
video/tracking.hpp:714
virtual CV_WRAP bool update(InputArray image, CV_OUT Rect &boundingBox)=0
Update the tracker, find the new most likely bounding box for the target
virtual CV_WRAP void init(InputArray image, const Rect &boundingBox)=0
Initialize the tracker with a known bounding box that surrounded the target
The MIL algorithm trains a classifier in an online manner to separate the object from the background.
Definition:
video/tracking.hpp:751
static CV_WRAP Ptr< TrackerMIL > create(const TrackerMIL::Params ¶meters=TrackerMIL::Params())
Create MIL tracker instance
Variational optical flow refinement
Definition:
video/tracking.hpp:524
@ BORDER_REFLECT_101
gfedcb|abcdefgh|gfedcba
Definition:
base.hpp:273
@ BORDER_CONSTANT
iiiiii|abcdefgh|iiiiiii with some specified i
Definition:
base.hpp:269
CV_EXPORTS_W RotatedRect CamShift(InputArray probImage, CV_IN_OUT Rect &window, TermCriteria criteria)
Finds an object center, size, and orientation.
CV_EXPORTS_W void calcOpticalFlowFarneback(InputArray prev, InputArray next, InputOutputArray flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
Computes a dense optical flow using the Gunnar Farneback's algorithm.
CV_EXPORTS_W int meanShift(InputArray probImage, CV_IN_OUT Rect &window, TermCriteria criteria)
Finds an object on a back projection image.
CV_EXPORTS_W int buildOpticalFlowPyramid(InputArray img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives=true, int pyrBorder=BORDER_REFLECT_101, int derivBorder=BORDER_CONSTANT, bool tryReuseInputImage=true)
Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
CV_EXPORTS_W double findTransformECC(InputArray templateImage, InputArray inputImage, InputOutputArray warpMatrix, int motionType, TermCriteria criteria, InputArray inputMask, int gaussFiltSize)
Finds the geometric transform (warp) between two images in terms of the ECC criterion .
CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask=noArray())
Computes the Enhanced Correlation Coefficient value between two images .
CV_EXPORTS_W Mat readOpticalFlow(const String &path)
Read a .flo file
CV_EXPORTS_W void calcOpticalFlowPyrLK(InputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray nextPts, OutputArray status, OutputArray err, Size winSize=Size(21, 21), int maxLevel=3, TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags=0, double minEigThreshold=1e-4)
Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyra...
CV_EXPORTS_W bool writeOpticalFlow(const String &path, InputArray flow)
Write a .flo to disk
CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform(InputArray src, InputArray dst, bool fullAffine)
Computes an optimal affine transformation between two 2D point sets.
"black box" representation of the file storage associated with a file on disk.
Definition:
aruco.hpp:75
Definition:
cvstd_wrapper.hpp:74
Definition:
video/tracking.hpp:829
Definition:
video/tracking.hpp:805
Definition:
video/tracking.hpp:758