OpenCV 4.5.3(日本語機械翻訳)
クラス階層
クラス階層一覧です。大雑把に文字符号順で並べられています。
[表示階層 1 2 3 4]
C cv::_InputArray This is the proxy class for passing read-only input arrays into OpenCV functions
C _IplConvKernel
C _IplConvKernelFP
C _IplImage
C _IplROI
C cv::dnn::details::_LayerStaticRegisterer
C cv::quality::QualityGMSD::_mat_data
C cv::quality::QualitySSIM::_mat_data
C cv::Accumulator< T >
C cv::Accumulator< char >
C cv::Accumulator< short >
C cv::Accumulator< unsigned char >
C cv::Accumulator< unsigned short >
C cv::Algorithm This is a base class for all more or less complex algorithms in OpenCV
C cv::Allocator< _Tp >
C cv::cuda::GpuMat::Allocator
C cv::utils::AllocatorStatisticsInterface
C cv::ogl::Arrays Wrapper for OpenGL Client-Side Vertex arrays
C cv::AsyncArray Returns result of asynchronous operations
C cv::AsyncPromise Provides result of asynchronous operations
C cv::AutoBuffer< _Tp, fixed_size > Automatically Allocated Buffer Class
C <AVCaptureVideoDataOutputSampleBufferDelegate>
C cv::dnn::BackendNode Derivatives of this class encapsulates functions of certain backends
C cv::dnn::BackendWrapper Derivatives of this class wraps cv::Mat for different backends and targets
C cv::barcode::BarcodeDetector
C cv::detail::BaseClassifier
C cv::detail::tracking::BaseClassifier
C cv::detail::tracking::online_boosting::BaseClassifier
C cv::text::BaseOCR
C cv::face::FacemarkLBF::BBox
C cv::detail::Blender Base class for all blenders
C cv::aruco::Board Board of markers
C cv::BOWImgDescriptorExtractor Class to compute an image descriptor using the bag of visual words
C cv::BOWTrainer Abstract base class for training the bag of visual words vocabulary from a set of descriptors
C cv::ximgproc::Box
C cv::ogl::Buffer Smart pointer for OpenGL buffer object with reference counting
C cv::cuda::BufferPool BufferPool for use with CUDA streams
C cv::BufferPoolController
C cv::LMSolver::Callback
C cv::text::ERFilter::Callback Callback with the classifier is made a class
C cv::parallel::tbb::ParallelForBackend::CallbackProxy
C cv::detail::CameraParams Describes camera parameters
C cv::linemod::QuantizedPyramid::Candidate Candidate feature with a score
C cv::CascadeClassifier Cascade classifier class for object detection
C cv::mcc::CChecker Checker object
C cv::mcc::CCheckerDraw Checker draw
C cv::CirclesGridFinderParameters
C cv::text::OCRBeamSearchDecoder::ClassifierCallback Callback with the character classifier is made a class
C cv::text::OCRHMMDecoder::ClassifierCallback Callback with the character classifier is made a class
C cv::detail::ClassifierThreshold
C cv::detail::tracking::ClassifierThreshold
C cv::detail::tracking::online_boosting::ClassifierThreshold
C cv::ccm::ColorCorrectionModel Core class of ccm model
C cv::colored_kinfu::ColoredKinFu KinectFusion implementation
C cv::CommandLineParser Designed for command line parsing
C cv::Complex< _Tp > A complex number class
C cv::face::FacemarkAAM::Config Optional parameter for fitting process
C cv::ocl::Context
C cv::face::CParams
C Cv16suf
C Cv32suf
C Cv64suf
C CvBox2D
C CvChain
C CvChainPtReader
C CvConnectedComp
C CvContour
C CvConvexityDefect
C cv::detail::CvFeatureEvaluator
C cv::detail::tracking::contrib_feature::CvFeatureEvaluator
C cv::detail::tracking::CvFeatureEvaluator
C CvFont
C CvGraph
C CvGraphEdge
C CvGraphScanner
C CvGraphVtx
C CvGraphVtx2D
C cvhalKeyPoint
C CvHistogram
C CvHuMoments
C CvLineIterator
C CvMat
C CvMatND
C CvMemBlock
C CvMemStorage
C CvMemStoragePos
C CvMoments
C CvNArrayIterator
C cv::detail::CvParams
C cv::detail::tracking::contrib_feature::CvParams
C cv::detail::tracking::CvParams
C CvPoint
C CvPoint2D32f
C CvPoint2D64f
C CvPoint3D32f
C CvPoint3D64f
C CvRect
C CvScalar
C CvSeq
C CvSeqBlock
C CvSeqReader
C CvSeqWriter
C CvSet
C CvSetElem
C CvSize
C CvSize2D32f
C CvSlice
C CvSparseMat
C CvSparseMatIterator
C CvSparseNode
C CvTermCriteria
C CvTreeNodeIterator
C cv::flann::CvType< T >
C cv::flann::CvType< char >
C cv::flann::CvType< double >
C cv::flann::CvType< float >
C cv::flann::CvType< int >
C cv::flann::CvType< short >
C cv::flann::CvType< unsigned char >
C cv::flann::CvType< unsigned short >
C cv::face::FacemarkAAM::Data Data container for the facemark::getData function
C cv::DataDepth< _Tp > A helper class for cv::DataType
C cv::DataType< _Tp > Template "trait" class for OpenCV primitive data types
C cv::DataType< bool >
C cv::DataType< char >
C cv::DataType< Complex< _Tp > >
C cv::DataType< double >
C cv::DataType< float >
C cv::DataType< float16_t >
C cv::DataType< int >
C cv::DataType< Matx< _Tp, m, n > >
C cv::DataType< Moments >
C cv::DataType< Point3_< _Tp > >
C cv::DataType< Point_< _Tp > >
C cv::DataType< Range >
C cv::DataType< Rect_< _Tp > >
C cv::DataType< RotatedRect >
C cv::DataType< Scalar_< _Tp > >
C cv::DataType< schar >
C cv::DataType< short >
C cv::DataType< Size_< _Tp > >
C cv::DataType< uchar >
C cv::DataType< ushort >
C cv::DataType< Vec< _Tp, cn > >
C cv::hal::DCT2D
C cv::videostab::DeblurerBase
C cv::DefaultDeleter< Y >
C cv::DefaultDeleter< CvHaarClassifierCascade >
C cv::traits::Depth< T >
C cv::traits::Depth< Complex< _Tp > >
C cv::traits::Depth< Matx< _Tp, m, n > >
C cv::traits::Depth< Moments >
C cv::traits::Depth< Point3_< _Tp > >
C cv::traits::Depth< Point_< _Tp > >
C cv::traits::Depth< Range >
C cv::traits::Depth< Rect_< _Tp > >
C cv::traits::Depth< RotatedRect >
C cv::traits::Depth< Scalar_< _Tp > >
C cv::traits::Depth< Size_< _Tp > >
C cv::traits::Depth< Vec< _Tp, cn > >
C cv::DescriptorMatcher::DescriptorCollection
C cv::DetectionBasedTracker
C cv::DetectionROI Struct for detection region of interest (ROI)
C cv::detail::Detector
C cv::detail::tracking::Detector
C cv::detail::tracking::online_boosting::Detector
C cv::linemod::Detector Object detector using the LINE template matching algorithm with any set of modalities
C cv::aruco::DetectorParameters Parameters for the detectMarker process:
C cv::mcc::DetectorParameters Parameters for the detectMarker process:
C cv::ocl::Device
C cv::cuda::DeviceInfo Class providing functionality for querying the specified GPU properties
C cv::hal::DFT1D
C cv::hal::DFT2D
C cv::dnn::Dict This class implements name-value dictionary, values are instances of DictValue
C cv::aruco::Dictionary Dictionary/Set of markers. It contains the inner codification
C cv::dnn::DictValue This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64
C cv::detail::DisjointSets
C cv::DMatch Class for matching keypoint descriptors
C cv::dnn_superres::DnnSuperResImpl A class to upscale images via convolutional neural networks. The following four models are implemented:
C cv::dpm::DPMDetector This is a C++ abstract class, it provides external user API to work with DPM
C cv::line_descriptor::DrawLinesMatchesFlags
C cv::DualQuat< _Tp >
C cv::dynafu::DynaFu
C cv::multicalib::MultiCameraCalibration::edge
C cv::text::ERStat The ERStat structure represents a class-specific Extremal Region (ER)
C cv::detail::EstimatedGaussDistribution
C cv::detail::tracking::EstimatedGaussDistribution
C cv::detail::tracking::online_boosting::EstimatedGaussDistribution
C cv::detail::Estimator Rotation estimator base class
C cv::cuda::Event
C cv::cuda::EventAccessor Class that enables getting cudaEvent_t from cuda::Event
C std::exception
C cv::detail::ExposureCompensator Base class for all exposure compensators
C cv::DetectionBasedTracker::ExtObject
C std::false_type
C cv::videostab::FastMarchingMethod Describes the Fast Marching Method implementation
C cv::detail::tracking::contrib_feature::CvHOGEvaluator::Feature
C cv::detail::tracking::contrib_feature::CvLBPEvaluator::Feature
C cv::linemod::Feature Discriminant feature described by its location and label
C cv::detail::tracking::contrib_feature::CvHaarEvaluator::FeatureHaar
C cv::detail::FeaturesMatcher Feature matchers base class
C cv::FileNode File Storage Node class
C cv::FileNodeIterator Used to iterate through sequences and mappings
C cv::FileStorage XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or reading data to/from a file
C cv::Formatted
C cv::Formatter
C cv::superres::FrameSource
C cv::MinProblemSolver::Function Represents function being optimized
C cv::flann::GenericIndex< Distance > The FLANN nearest neighbor index class. This class is templated with the type of elements for which the index is built
C cv::optflow::GPCDetails
C cv::optflow::GPCMatchingParams Class encapsulating matching parameters
C cv::optflow::GPCPatchDescriptor
C cv::optflow::GPCPatchSample
C cv::optflow::GPCTrainingParams Class encapsulating training parameters
C cv::optflow::GPCTrainingSamples Class encapsulating training samples
C cv::cuda::GpuData
C cv::cuda::GpuMat Base storage class for GPU memory with reference counting
C cv::cuda::GpuMatND
C cv::detail::Graph
C cv::detail::GraphCutSeamFinderBase Base class for all minimum graph-cut-based seam estimators
C cv::detail::GraphEdge
C cv::Hamming
C cv::sfinae::has_parenthesis_operator< C, Ret, Args >
C cv::ppf_match_3d::hashnode_i
C cv::SparseMat::Hdr Sparse matrix header
C cv::HOGDescriptor Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector
C cv::cuda::HostMem Class with reference counting wrapping special memory type allocation functions from CUDA
C cv::ppf_match_3d::HSHTBL_i
C cv::ppf_match_3d::ICP This class implements a very efficient and robust variant of the iterative closest point (ICP) algorithm. The task is to register a 3D model (or point cloud) against a set of noisy target data. The variants are put together by myself after certain tests. The task is to be able to match partial, noisy point clouds in cluttered scenes, quickly. You will find that my emphasis is on the performance, while retaining the accuracy. This implementation is based on Tolga Birdal's MATLAB implementation in here: http://www.mathworks.com/matlabcentral/fileexchange/47152-icp-registration-using-efficient-variants-and-multi-resolution-scheme The main contributions come from:
C cv::videostab::IDenseOptFlowEstimator
C cv::detail::tracking::tbm::IDescriptorDistance Declares an interface for distance computation between reidentification descriptors
C cv::DetectionBasedTracker::IDetector
C cv::videostab::IFrameSource
C cv::detail::tracking::tbm::IImageDescriptor Declares base class for image descriptor
C cv::videostab::ILog
C cv::ocl::Image2D
C cv::detail::ImageFeatures Structure containing image keypoints and descriptors
C cv::videostab::ImageMotionEstimatorBase Base class for global 2D motion estimation methods which take frames as input
C cv::videostab::IMotionStabilizer
C cv::dnn_objdetect::InferBbox A class to post process model predictions
C cv::DetectionBasedTracker::InnerParameters
C cv::videostab::InpainterBase
C cv::segmentation::IntelligentScissorsMB Intelligent Scissors image segmentation
C cv::kinfu::Intr
C cv::videostab::IOutlierRejector
C cv::bioinspired::RetinaParameters::IplMagnoParameters Inner Plexiform Layer Magnocellular channel (IplMagno)
C cv::videostab::ISparseOptFlowEstimator
C cv::detail::tracking::tbm::ITrackerByMatching Tracker-by-Matching algorithm interface
C cv::KalmanFilter Kalman filter class
C cv::ocl::Kernel
C cv::ocl::KernelArg
C cv::line_descriptor::KeyLine A class to represent a line
C cv::KeyPoint Data structure for salient point detectors
C cv::KeyPointsFilter A class filters a vector of keypoints
C cv::kinfu::KinFu KinectFusion implementation
C cv::L1< T >
C cv::L2< T >
C cv::large_kinfu::LargeKinfu Large Scale Dense Depth Fusion implementation
C cv::dnn::LayerFactory Layer factory allows to create instances of registered layers
C cv::LDA Linear Discriminant Analysis
C cv::LineIterator Line iterator
C cv::utils::logging::LogTag
C cv::line_descriptor::LSDParam
C cv::reg::Map Base class for modelling a Map between two images
C cv::reg::Mapper Base class for modelling an algorithm for calculating a map
C cv::reg::MapTypeCaster
C cv::BaseCascadeClassifier::MaskGenerator
C cv::Mat N-dimensional dense array class
C cv::MatAllocator Custom array allocator
C cv::linemod::Match Represents a successful template match
C cv::detail::MatchesInfo Structure containing information about matches between two images
C cv::stereo::MatchQuasiDense
C cv::MatCommaInitializer_< _Tp > Comma-separated Matrix Initializer
C cv::MatConstIterator
C cv::MatExpr Matrix expression representation This is a list of implemented matrix operations that can be combined in arbitrary complex expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a real-valued scalar ( double )):
C cv::MatOp
C cv::MatSize
C cv::MatStep
C cv::Matx< _Tp, m, n > Template class for small matrices whose type and size are known at compilation time
C cv::Matx< _Tp, cn, 1 >
C cv::Matx< float, 2, 3 >
C cv::MatxCommaInitializer< _Tp, m, n > Comma-separated Matrix Initializer
C cv::MatxCommaInitializer< _Tp, m, 1 >
C cv::linemod::Modality Interface for modalities that plug into the LINE template matching representation
C cv::dnn::Model This class is presented high-level API for neural networks
C cv::face::FacemarkAAM::Model The model of AAM Algorithm
C cv::Moments Struct returned by cv::moments
C cv::videostab::MotionEstimatorBase Base class for all global motion estimation methods
C cv::multicalib::MultiCameraCalibration Class for multiple camera calibration that supports pinhole camera and omnidirection camera. For omnidirectional camera model, please refer to omnidir.hpp in ccalib module. It first calibrate each camera individually, then a bundle adjustment like optimization is applied to refine extrinsic parameters. So far, it only support "random" pattern for calibration, see randomPattern.hpp in ccalib module for details. Images that are used should be named by "cameraIdx-timestamp.*", several images with the same timestamp means that they are the same pattern that are photographed. cameraIdx should start from 0
C cv::legacy::MultiTracker_Alt Base abstract class for the long-term Multi Object Trackers:
C cv::legacy::tracking::MultiTracker_Alt Base abstract class for the long-term Multi Object Trackers:
C cv::NAryMatIterator N-ary multi-dimensional array iterator
C cv::dnn::Net This class allows to create and manipulate comprehensive artificial neural networks
C cv::Node< OBJECT >
C cv::optflow::GPCTree::Node
C cv::SparseMat::Node Sparse matrix node - element of a hash table
C cv::instr::NodeData
C cv::instr::NodeDataTls
C NSObject
C <NSObject>
C <NSObjectNSObject>
C cv::dnn_objdetect::object Structure to hold the details pertaining to a single bounding box
C cv::dpm::DPMDetector::ObjectDetection
C cv::ocl::OpenCLExecutionContext
C cv::ocl::OpenCLExecutionContextScope
C cv::bioinspired::RetinaParameters::OPLandIplParvoParameters Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
C cv::parallel::ParallelForAPI
C cv::ParallelLoopBody Base class for parallel data processors
C cv::DetectionBasedTracker::Parameters
C cv::colored_kinfu::Params
C cv::detail::tracking::TrackerContribFeatureHAAR::Params
C cv::detail::tracking::TrackerContribSamplerCSC::Params
C cv::detail::tracking::TrackerSamplerCS::Params
C cv::detail::tracking::TrackerSamplerCSC::Params
C cv::detail::tracking::TrackerSamplerPF::Params This structure contains all the parameters that can be varied during the course of sampling algorithm. Below is the structure exposed, together with its members briefly explained with reference to the above discussion on algorithm's working
C cv::face::FacemarkAAM::Params
C cv::face::FacemarkKazemi::Params
C cv::face::FacemarkLBF::Params
C cv::kinfu::Params
C cv::large_kinfu::Params
C cv::legacy::tracking::TrackerBoosting::Params
C cv::legacy::tracking::TrackerMedianFlow::Params
C cv::legacy::tracking::TrackerTLD::Params
C cv::line_descriptor::BinaryDescriptor::Params List of BinaryDescriptor parameters:
C cv::phase_unwrapping::HistogramPhaseUnwrapping::Params Parameters of phaseUnwrapping constructor
C cv::SimpleBlobDetector::Params
C cv::structured_light::GrayCodePattern::Params Parameters of StructuredLightPattern constructor
C cv::structured_light::SinusoidalPattern::Params Parameters of SinusoidalPattern constructor
C cv::TrackerDaSiamRPN::Params
C cv::TrackerGOTURN::Params
C cv::TrackerMIL::Params
C cv::tracking::TrackerCSRT::Params
C cv::tracking::TrackerKCF::Params
C cv::ximgproc::EdgeDrawing::Params
C cv::ParamType< _Tp, _EnumTp >
C cv::ParamType< _Tp, typename std::enable_if< std::is_enum< _Tp >::value >::type >
C cv::ParamType< Algorithm >
C cv::ParamType< bool >
C cv::ParamType< double >
C cv::ParamType< float >
C cv::ParamType< int >
C cv::ParamType< Mat >
C cv::ParamType< Scalar >
C cv::ParamType< std::vector< Mat > >
C cv::ParamType< String >
C cv::ParamType< uchar >
C cv::ParamType< uint64 >
C cv::ParamType< unsigned >
C cv::PCA Principal Component Analysis
C cv::optflow::PCAPrior This class can be used for imposing a learned prior on the resulting optical flow. Solution will be regularized according to this prior. You need to generate appropriate prior file with "learn_prior.py" script beforehand
C cv::ocl::Platform
C cv::ocl::PlatformInfo
C cv::Point3_< _Tp > Template class for 3D points specified by its coordinates x, y and z
C cv::Point_< _Tp > Template class for 2D points specified by its coordinates x and y
C cv::Point_< float >
C cv::Point_< int >
C cv::ppf_match_3d::Pose3D Class, allowing the storage of a pose. The data structure stores both the quaternions and the matrix forms. It supports IO functionality together with various helper methods to work with poses
C cv::ppf_match_3d::PoseCluster3D When multiple poses (see Pose3D) are grouped together (contribute to the same transformation) pose clusters occur. This class is a general container for such groups of poses. It is possible to store, load and perform IO on these poses
C cv::kinfu::detail::PoseGraph
C cv::ppf_match_3d::PPF3DDetector Class, allowing the load and matching 3D models. Typical Use:
C cv::face::PredictCollector Abstract base class for all strategies of prediction result handling
C cv::face::StandardCollector::PredictResult
C cv::ocl::Program
C cv::ocl::ProgramSource
C cv::kinfu::Intr::Projector
C cv::detail::ProjectorBase Base class for warping logic implementation
C cv::stereo::PropagationParameters
C cv::videostab::PyrLkOptFlowEstimatorBase
C cv::PyRotationWarper
C cv::QRCodeDetector
C cv::QtFont QtFont available only for Qt. See cv::fontQt
C cv::Subdiv2D::QuadEdge
C cv::linemod::QuantizedPyramid Represents a modality operating over an image pyramid
C cv::stereo::QuasiDenseStereo Class containing the methods needed for Quasi Dense Stereo computation
C cv::Quat< _Tp >
C cv::QuatEnum
C cv::ocl::Queue
C cv::randpattern::RandomPatternCornerFinder Class for finding features points and corresponding 3D in world coordinate of a "random" pattern, which can be to be used in calibration. It is useful when pattern is partly occluded or only a part of pattern can be observed in multiple cameras calibration. The pattern can be generated by RandomPatternGenerator class described in this file
C cv::randpattern::RandomPatternGenerator
C cv::Range Template class specifying a continuous subsequence (slice) of a sequence
C cv::videostab::RansacParams Describes RANSAC method parameters
C cv::Allocator< _Tp >::rebind< U >
C cv::Rect_< _Tp > Template class for 2D rectangles
C cv::kinfu::Intr::Reprojector Camera intrinsics
C cv::bioinspired::RetinaParameters Retina model parameters structure
C cv::rgbd::RgbdFrame
C cv::optflow::RLOFOpticalFlowParameter This is used store and set up the parameters of the robust local optical flow (RLOF) algoritm
C cv::RNG Random Number Generator
C cv::RNG_MT19937 Mersenne Twister random number generator
C cv::RotatedRect The class represents rotated (i.e. not up-right) rectangles on a plane
C cv::detail::RotationWarper Rotation-only model image warper interface
C cv::traits::SafeFmt< T, available >
C cv::traits::SafeFmt< T, false >
C cv::traits::SafeFmt< T, true >
C cv::traits::SafeType< T, available >
C cv::traits::SafeType< T, false >
C cv::traits::SafeType< T, true >
C cv::detail::SeamFinder Base class for a seam estimator
C cv::bioinspired::SegmentationParameters Parameter structure that stores the transient events detector setup parameters
C std::shared_ptr
C cv::SimilarRects
C cv::Size_< _Tp > Template class for specifying the size of an image or rectangle
C cv::Size_< float >
C cv::SL2< T >
C cv::softdouble
C cv::softfloat
C cv::SparseMat The class SparseMat represents multi-dimensional sparse numerical arrays
C cv::SparseMatConstIterator Read-Only Sparse Matrix Iterator
C cv::videostab::StabilizerBase
C cv::Stitcher High level image stitcher
C cv::cuda::Stream This class encapsulates a queue of asynchronous calls
C cv::cuda::StreamAccessor Class that enables getting cudaStream_t from cuda::Stream
C cv::detail::StrongClassifierDirectSelection
C cv::detail::tracking::online_boosting::StrongClassifierDirectSelection
C cv::detail::tracking::StrongClassifierDirectSelection
C cv::Subdiv2D
C cv::cuda::SURF_CUDA Class used for extracting Speeded Up Robust Features (SURF) from an image. :
C cv::SVD Singular Value Decomposition
C cv::cuda::TargetArchs Class providing a set of static methods to check what NVIDIA* card architecture the CUDA module was built for
C cv::linemod::Template
C cv::TermCriteria The class defining termination criteria for iterative algorithms
C cv::text::TextDetector An abstract class providing interface for text detection algorithms
C cv::face::FacemarkAAM::Model::Texture
C cv::ogl::Texture2D Smart pointer for OpenGL 2D texture memory with reference counting
C cv::ppf_match_3d::THash Struct, holding a node in the hashtable
C cv::TickMeter Class to measure passing time
C cv::detail::Timelapser
C cv::ocl::Timer
C cv::TLSDataContainer
C cv::detail::tracking::tbm::Track Describes tracks
C cv::detail::tracking::tbm::TrackedObject The TrackedObject struct defines properties of detected object
C cv::DetectionBasedTracker::TrackedObject
C cv::Tracker Base abstract class for the long-term tracker
C cv::legacy::TrackerBoosting Boosting tracker
C cv::legacy::tracking::TrackerBoosting Boosting tracker
C cv::detail::TrackerContribFeatureSet Class that manages the extraction and selection of features
C cv::detail::tracking::TrackerContribFeatureSet Class that manages the extraction and selection of features
C cv::detail::TrackerContribSampler Class that manages the sampler in order to select regions for the update the model of the tracker [AAM] Sampling e Labeling. See table I and section III B
C cv::detail::tracking::TrackerContribSampler Class that manages the sampler in order to select regions for the update the model of the tracker [AAM] Sampling e Labeling. See table I and section III B
C cv::legacy::TrackerCSRT CSRT tracker
C cv::legacy::tracking::TrackerCSRT CSRT tracker
C cv::detail::TrackerFeature Abstract base class for TrackerFeature that represents the feature
C cv::detail::tracking::TrackerFeature Abstract base class for TrackerFeature that represents the feature
C cv::detail::TrackerFeatureSet Class that manages the extraction and selection of features
C cv::detail::tracking::TrackerFeatureSet Class that manages the extraction and selection of features
C cv::legacy::TrackerKCF KCF (Kernelized Correlation Filter) tracker
C cv::legacy::tracking::TrackerKCF KCF (Kernelized Correlation Filter) tracker
C cv::legacy::TrackerMedianFlow Median Flow tracker
C cv::legacy::tracking::TrackerMedianFlow Median Flow tracker
C cv::legacy::TrackerMIL The MIL algorithm trains a classifier in an online manner to separate the object from the background
C cv::legacy::tracking::TrackerMIL The MIL algorithm trains a classifier in an online manner to separate the object from the background
C cv::detail::TrackerModel Abstract class that represents the model of the target
C cv::detail::tracking::TrackerModel Abstract class that represents the model of the target
C cv::legacy::TrackerMOSSE MOSSE (Minimum Output Sum of Squared Error) tracker
C cv::legacy::tracking::TrackerMOSSE MOSSE (Minimum Output Sum of Squared Error) tracker
C cv::detail::tracking::tbm::TrackerParams The TrackerParams struct stores parameters of TrackerByMatching
C cv::detail::TrackerSampler Class that manages the sampler in order to select regions for the update the model of the tracker [AAM] Sampling e Labeling. See table I and section III B
C cv::detail::tracking::TrackerSampler Class that manages the sampler in order to select regions for the update the model of the tracker [AAM] Sampling e Labeling. See table I and section III B
C cv::detail::TrackerSamplerAlgorithm Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific sampler
C cv::detail::tracking::TrackerSamplerAlgorithm Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific sampler
C cv::detail::TrackerStateEstimator Abstract base class for TrackerStateEstimator that estimates the most likely target state
C cv::detail::tracking::TrackerStateEstimator Abstract base class for TrackerStateEstimator that estimates the most likely target state
C cv::detail::TrackerTargetState Abstract base class for TrackerTargetState that represents a possible state of the target
C cv::detail::tracking::TrackerTargetState Abstract base class for TrackerTargetState that represents a possible state of the target
C cv::legacy::TrackerTLD TLD (Tracking, learning and detection) tracker
C cv::legacy::tracking::TrackerTLD TLD (Tracking, learning and detection) tracker
C std::true_type
C cv::traits::Type< T >
C cv::traits::Type< Complex< _Tp > >
C cv::traits::Type< Matx< _Tp, m, n > >
C cv::traits::Type< Moments >
C cv::traits::Type< Point3_< _Tp > >
C cv::traits::Type< Point_< _Tp > >
C cv::traits::Type< Range >
C cv::traits::Type< Rect_< _Tp > >
C cv::traits::Type< RotatedRect >
C cv::traits::Type< Scalar_< _Tp > >
C cv::traits::Type< Size_< _Tp > >
C cv::traits::Type< Vec< _Tp, cn > >
C cv::detail::tracking::kalman_filters::UkfSystemModel Model of dynamical system for Unscented Kalman filter. The interface for dynamical system model. It contains functions for computing the next state and the measurement. It must be inherited for using UKF
C cv::detail::tracking::UkfSystemModel Model of dynamical system for Unscented Kalman filter. The interface for dynamical system model. It contains functions for computing the next state and the measurement. It must be inherited for using UKF
C cv::detail::UkfSystemModel Model of dynamical system for Unscented Kalman filter. The interface for dynamical system model. It contains functions for computing the next state and the measurement. It must be inherited for using UKF
C cv::UMat
C cv::UMatData
C cv::detail::tracking::kalman_filters::UnscentedKalmanFilter The interface for Unscented Kalman filter and Augmented Unscented Kalman filter
C cv::detail::tracking::UnscentedKalmanFilter The interface for Unscented Kalman filter and Augmented Unscented Kalman filter
C cv::detail::UnscentedKalmanFilter The interface for Unscented Kalman filter and Augmented Unscented Kalman filter
C cv::detail::tracking::kalman_filters::UnscentedKalmanFilterParams Unscented Kalman filter parameters. The class for initialization parameters of Unscented Kalman filter
C cv::detail::tracking::UnscentedKalmanFilterParams Unscented Kalman filter parameters. The class for initialization parameters of Unscented Kalman filter
C cv::detail::UnscentedKalmanFilterParams Unscented Kalman filter parameters. The class for initialization parameters of Unscented Kalman filter
C cv::UsacParams
C cv::ocl::Context::UserContext
C cv::v_float32x4
C cv::v_float64x2
C cv::v_int16x8
C cv::v_int32x4
C cv::v_int64x2
C cv::v_int8x16
C cv::v_reg< _Tp, n >
C cv::V_TypeTraits< _Tp >
C cv::v_uint16x8
C cv::v_uint32x4
C cv::v_uint64x2
C cv::v_uint8x16
C cv::multicalib::MultiCameraCalibration::vertex
C cv::Subdiv2D::Vertex
C cv::vfloat32mf2_t
C cv::vfloat64mf2_t
C cv::VideoCapture Class for video capturing from video files, image sequences or cameras
C cv::VideoWriter Video writer class
C cv::vint16mf2_t
C cv::vint32mf2_t
C cv::vint64mf2_t
C cv::vint8mf2_t
C cv::vint8mf4_t
C cv::kinfu::Volume
C cv::kinfu::VolumeParams
C cv::vuint16mf2_t
C cv::vuint32mf2_t
C cv::vuint64mf2_t
C cv::vuint8mf2_t
C cv::vuint8mf4_t
C cv::WarperCreator Image warper factories base class
C cv::xobjdetect::WBDetector WaldBoost detector
C cv::detail::tracking::online_boosting::WeakClassifierHaarFeature
C cv::detail::tracking::WeakClassifierHaarFeature
C cv::detail::WeakClassifierHaarFeature
C cv::wechat_qrcode::WeChatQRCode WeChat QRCode includes two CNN-based models: A object detection model and a super resolution model. Object detection model is applied to detect QRCode with the bounding box. super resolution model is applied to zoom in QRCode when it is small
C cv::videostab::WobbleSuppressorBase